
COORDINATED HIGHWAYS ACTION RESPONSE TEAM
STATE HIGHWAY ADMINISTRATION

CHART Release 7

Mapping Release 6

Detailed Design

Contract SHA-06-CHART

 Document # WO21-DS-001

 Work Order 21, Deliverable 4

 March 2, 2011

 By

 CSC

CHART R7 Detailed Design ii 03/02/2011

Revision Description Pages Affected Date
0 Initial Release All 3/2/2011

CHART R7 Detailed Design iii 03/02/2011

Table of Contents

1 Introduction ... 1-1

1.1 Purpose ... 1-1

1.2 Objectives ... 1-1

1.3 Scope ... 1-1

1.4 Design Process .. 1-2

1.5 Design Tools ... 1-2

1.6 Work Products ... 1-2

2 Architecture .. 2-1

2.1 Network/Hardware .. 2-1

2.2 Software .. 2-1

2.2.1 COTS Products .. 2-1

2.2.1.1 CHART ...2-1
2.2.1.2 Mapping ..2-4

2.2.2 Deployment /Interface Compatibility .. 2-4

2.2.2.1 CHART ...2-4
2.2.2.2 Mapping ..2-7

2.3 Security ... 2-7

2.4 Data ... 2-8

2.4.1 Data Storage... 2-8

2.4.1.1 Database ..2-8
2.4.1.2 CHART Flat Files ...2-26

2.4.2 Database Design .. 2-28

2.4.2.1 Integrated Map – Detector Bearing ...2-28
2.4.2.2 NTCIP Camera Support ..2-30
2.4.2.3 SCAN Weather Integration ...2-30
2.4.2.4 Archiving - Changes ...2-33

3 Key Design Concepts ... 3-1

3.1 Integrated Map – Detector Bearing ... 3-1

3.2 NTCIP Camera Support ... 3-2

3.3 SCAN Weather Integration .. 3-2

3.4 Shift Handoff Report ... 3-3

3.5 Error Processing .. 3-3

3.6 Packaging ... 3-4

3.6.1 CHART .. 3-4

3.6.2 Mapping ... 3-5

3.7 Assumptions and Constraints ... 3-5

4 Use Cases – Integrated Map – Detector Bearing 7

CHART R7 Detailed Design iv 03/02/2011

4.1 CHART ... 7

4.1.1 R7HighLevel (Use Case Diagram) .. 7

4.1.1.1 Configure TSS (Use Case) ... 8
4.1.1.2 Configure Video Sources (Use Case) .. 9
4.1.1.3 Configure Weather Settings (Use Case) .. 9
4.1.1.4 Export TSS Data (Use Case) .. 9
4.1.1.5 Manage Camera (Use Case) ... 9
4.1.1.6 Manage Traffic Events (Use Case) .. 9
4.1.1.7 Provide Weather Data to Internal Applications (Use Case) ... 10
4.1.1.8 Retrieve Weather Data From SCAN (Use Case) .. 10
4.1.1.9 View TSS on Map (Use Case) ... 10

4.1.2 MapAndGISUses (Use Case Diagram) .. 11

4.1.2.1 Add Alias (Use Case) .. 11
4.1.2.2 Add Close Devices to Response from Map (Use Case) ... 12
4.1.2.3 Create Traffic Event (Use Case) .. 12
4.1.2.4 Edit Alias (Use Case) ... 12
4.1.2.5 Edit Traffic Event Properties (Use Case) ... 12
4.1.2.6 Get Aliases (Use Case) .. 12
4.1.2.7 Get Counties By State (Use Case) ... 12
4.1.2.8 Get Intersecting Routes (Use Case) .. 12
4.1.2.9 Get Regions By State (Use Case) ... 12
4.1.2.10 Get Routes (Use Case) ... 12
4.1.2.11 Get States (Use Case) .. 13
4.1.2.12 Manage Aliases (Use Case) ... 13
4.1.2.13 Navigate Map (Use Case) .. 13
4.1.2.14 Perform GIS Query (Use Case) ... 13
4.1.2.15 Remove Alias (Use Case) .. 13
4.1.2.16 Select Alias Location (Use Case)... 13
4.1.2.17 Select County (Use Case) .. 13
4.1.2.18 Select Intersecting Feature (Use Case) ... 14
4.1.2.19 Select Intersecting Exit (Use Case) .. 14
4.1.2.20 Select Intersecting Milepost (Use Case) .. 14
4.1.2.21 Select Intersecting Route (Use Case) ... 14
4.1.2.22 Select Map Layers (Use Case) ... 14
4.1.2.23 Select Primary Route (Use Case) ... 15
4.1.2.24 Select Region (Use Case)... 15
4.1.2.25 Select State (Use Case) .. 15
4.1.2.26 Select Target Location on Map (Use Case) ... 15
4.1.2.27 Specify Traffic Event Location (Use Case) .. 15
4.1.2.28 Specify Alias Location (Use Case) .. 15
4.1.2.29 Specify Device Location (Use Case) ... 15
4.1.2.30 Specify Object Location (Use Case) .. 16
4.1.2.31 Use Devices and Traffic Events from Map (Use Case) ... 16
4.1.2.32 View Alias List (Use Case).. 16
4.1.2.33 View Center's Events On Map (Use Case) .. 16
4.1.2.34 View Close Devices on Map (Use Case) ... 16
4.1.2.35 View Devices Close to Traffic Event (Use Case) .. 16
4.1.2.36 View Devices On Map (Use Case) .. 17
4.1.2.37 View Home Page (Use Case) ... 17
4.1.2.38 View Home Page Map (Use Case) .. 17
4.1.2.39 View Open Events On Map (Use Case) ... 17
4.1.2.40 View Traffic Event Details (Use Case) .. 17

4.1.3 MapDeviceAndTrafficEventUses (Use Case Diagram) .. 18

4.1.3.1 Display Camera on Home Monitor (Use Case) ... 18

CHART R7 Detailed Design v 03/02/2011

4.1.3.2 Display Camera on Local Monitor (Use Case) .. 18
4.1.3.3 Edit DMS Response Message (Use Case) ... 18
4.1.3.4 Edit HAR Response Message (Use Case) .. 19
4.1.3.5 Edit Traffic Event Roadway Conditions (Use Case) ... 19
4.1.3.6 Override Control of Camera (Use Case) .. 19
4.1.3.7 Release Control of Camera (Use Case) .. 19
4.1.3.8 Request Control of Camera (Use Case) ... 19
4.1.3.9 Use Camera from Map (Use Case) .. 19
4.1.3.10 Use DMS from Map (Use Case) .. 19
4.1.3.11 Use HAR from Map (Use Case) .. 20
4.1.3.12 Use SHAZAM from Map (Use Case) .. 20
4.1.3.13 Use Traffic Event from Map (Use Case) ... 20
4.1.3.14 Use TSS from Map (Use Case) .. 20
4.1.3.15 View Camera Details Page (Use Case) .. 21
4.1.3.16 View DMS Details Page (Use Case).. 21
4.1.3.17 View HAR Details Page (Use Case) .. 21
4.1.3.18 View SHAZAM Details Page (Use Case) ... 21
4.1.3.19 View Traffic Event Details Page (Use Case) ... 21
4.1.3.20 View TSS Details Page (Use Case) ... 21

4.1.4 ConfigureTSS (Use Case Diagram) ... 22

4.1.4.1 Edit Map Display Options (Use Case) ... 22
4.1.4.2 Set Bearing (Use Case) .. 22
4.1.4.3 Set Zone Group Display Direction (Use Case) .. 22
4.1.4.4 Set Zone Group Display Order (Use Case) .. 23

4.2 Mapping .. 23

4.2.1 Data Exporter Synchronization .. 23

4.2.1.1 Synchronize Add Events & Devices (Use Case) ... 23
4.2.1.2 Synchronize Update Events & Devices (Use Case) ... 24
4.2.1.3 Synchronize Remove Devices (Use Case) ... 24

4.2.2 DisplayTSS (Use Case Diagram) ... 25

4.2.2.1 Operator (Actor) .. 25
4.2.2.2 View TSSs on Intranet & Internet map (Use Case) ... 25
4.2.2.3 View Zone Group Display on TSS (Use Case) .. 25

5 Detailed Design – Integrated Map – Detector Bearing 26

5.1 Human-Machine Interface .. 26

5.2 System Interfaces ... 5-7

5.2.1 Class Diagrams .. 5-7

5.2.1.1 TSSManagement (Class Diagram)..5-7

5.3 GUI TSS Data Classes ... 5-16

5.3.1 Class Diagrams .. 5-16

5.3.1.1 GUITSSDataClasses (Class Diagram) ..5-16

5.4 Package chartlite.servlet.tss .. 5-18

5.4.1 Classs Diagrams ... 5-18

5.4.1.1 chartlite.servlet.tss Classes..5-18

5.4.2 Sequence Diagrams.. 5-20

5.4.2.1 chartlite.servlet.tss:processUpdateZoneGroupDisplayDirection ..5-20
5.4.2.2 chartlite.servlet.tss:processUpdateMapDisplayOptions ..5-22
5.4.2.3 chartlite.servlet.tss:getEditTSSMapDisplayOptionsForm ..5-24

CHART R7 Detailed Design vi 03/02/2011

5.5 Package chartlite.servlet.map ... 5-26

5.5.1 Class Diagrams .. 5-26

5.5.1.1 MapClasses (Class Diagram) ..5-26

5.5.2 Sequence Diagrams.. 5-28

5.5.2.1 MapReqHdlr:getHomePageMapDataJSON ..5-28
5.5.2.2 MapReqHdlr:getTrafficEventJSON..5-29
5.5.2.3 MapReqHdlr:addJSONFeaturesForTSSLayers ..5-30
5.5.2.4 MapReqHdlr:getCloseDevicesMapDataJSON ...5-31

5.6 Package CHART2.TSSManagementModule .. 5-32

5.6.1 Class Diagrams .. 5-32

5.6.1.1 TSSManagementModulePkg ..5-32

5.6.2 Sequence Diagrams.. 5-40

5.6.2.1 PolledTSSImpl:setMapDisplayOptions ..5-40

5.7 Mapping Device Editor ... 5-41

5.7.1 Sequence Diagrams.. 5-41

5.8 CHART Intranet & Internet Mapping GUI .. 5-42

5.9 CHART Data Exporter Synchronization (CHART Intranet Map) .. 5-42

5.9.1 Class Diagrams .. 5-42

5.9.1.1 CHARTInventoryHandler Classes ..5-43
5.9.1.2 CHARTMap.Handlers.CHARTInventoryHandler (Class) ...5-43
5.9.1.3 CHARTMap.Handlers.DMSInventoryHandler (Class) ..5-43
5.9.1.4 CHARTMap.Handlers.HARInventoryHandler (Class) ..5-43
5.9.1.5 CHARTMap.Handlers.SHAZAMInventoryHandler (Class) ..5-43
5.9.1.6 CHARTMap.Handlers.CHARTEventInventoryHandler (Class) ..5-43
5.9.1.7 CHARTMap.Handlers.CHARTClosureInventoryHandler (Class) ...5-43
5.9.1.8 CHARTMap.Handlers.CameraInventoryHandler (Class) ..5-43
5.9.1.9 CHARTMap.Handlers.TssInventoryHandler (Class) ...5-44

5.9.2 Sequence Diagram ... 5-44

5.9.2.1 CHART Data Exporter Synchronization ..5-44

6 Use Cases – NTCIP Camera ... 6-1

6.1 R7 Camera Use Cases .. 6-1

6.1.1 Add Video Source (Use Case) ... 6-2

6.1.2 Administrator (Actor) .. 6-2

6.1.3 Block Flash Video To Public (Use Case) .. 6-2

6.1.4 Choose Camera For Monitor (Use Case) ... 6-2

6.1.5 Choose Monitor For Camera (Use Case) ... 6-2

6.1.6 Configure Video Sources (Use Case) .. 6-2

6.1.7 Configure Flash Streaming Control (Use Case)... 6-2

6.1.8 Configure Multiple Video Sending Devices (Use Case) ... 6-2

6.1.9 Configure Switches (Use Case) ... 6-3

6.1.10 ConfigureEncoders (Use Case) .. 6-3

6.1.11 Control Flash Video Streams (Use Case) .. 6-3

CHART R7 Detailed Design vii 03/02/2011

6.1.12 Copy Video Source (Use Case) ... 6-3

6.1.13 Display Camera Image (Use Case) .. 6-3

6.1.14 Display Flash Streaming Status (Use Case) ... 6-3

6.1.15 Display Multiple Video Sending Devices (Use Case) ... 6-3

6.1.16 Display Video (Use Case) .. 6-3

6.1.17 Enable Flash Video to Public (Use Case) .. 6-3

6.1.18 Manage Camera (Use Case)... 6-4

6.1.19 Operator (Actor) .. 6-4

6.1.20 Remove Video Source (Use Case) ... 6-4

6.1.21 System (Actor) ... 6-4

6.1.22 Update Video Source (Use Case) .. 6-4

6.1.23 View Cameras (Use Case) ... 6-4

6.2 DisplayCamera (Use Case Diagram) .. 6-5

6.2.1 Build a Route (Use Case) ... 6-5

6.2.2 Camera and Monitor On Different Switch Fabric (Use Case) ... 6-5

6.2.3 Camera and Monitor On Same Switch Fabric (Use Case) ... 6-6

6.2.4 Command CoreTec MPEG-4 Decoder (Use Case) .. 6-6

6.2.5 Command Decoder (Use Case) .. 6-6

6.2.6 Command iMPath MPEG-2 Decoder (Use Case) .. 6-6

6.2.7 Command V1500 Switch (Use Case) .. 6-6

6.2.8 Display Camera (Use Case) ... 6-6

6.2.9 Display Camera On Monitor (Use Case) ... 6-7

6.2.10 Move To Preset (Use Case) ... 6-7

6.2.11 Override Camera Image Display (Use Case) .. 6-7

6.2.12 StartVideoTour (Use Case) .. 6-7

6.2.13 StopVideoTour (Use Case) .. 6-7

6.2.14 Terminate Camera Control (Use Case) .. 6-7

6.3 MaintainCamera (Use Case Diagram) ... 6-8

6.3.1 Control Camera (Use Case) ... 6-8

6.3.2 Poll Camera (Use Case) ... 6-8

6.3.3 Put Camera Online (Use Case) .. 6-9

6.3.4 Request Camera Control (Use Case) ... 6-9

6.3.5 Take Camera Offline (Use Case) ... 6-9

6.3.6 Terminate Camera Control (Use Case) .. 6-9

6.3.7 View Camera Details for Maint (Use Case) .. 6-9

6.3.8 View Camera List for Maint (Use Case) ... 6-10

6.3.9 View Device Details For Maint (Use Case) ... 6-10

CHART R7 Detailed Design viii 03/02/2011

6.3.10 View Device List For Maint (Use Case) .. 6-10

6.4 ManageCamera (Use Case Diagram) ... 6-11

6.4.1 Control Camera (Use Case) ... 6-12

6.4.2 Display Camera (Use Case) ... 6-12

6.4.3 Display No Video Available Source On Monitor (Use Case) ... 6-12

6.4.4 Manage Camera (Use Case)... 6-12

6.4.5 Manage Camera Control (Use Case) ... 6-12

6.4.6 Move to Preset (Use Case) ... 6-12

6.4.7 Poll Camera (Use Case) ... 6-12

6.4.8 Put Camera Online (Use Case) .. 6-13

6.4.9 Put Monitor Online (Use Case).. 6-13

6.4.10 Remove Camera From Monitors (Use Case) ... 6-13

6.4.11 Revoke Control (Use Case) ... 6-13

6.4.12 Revoke Display (Use Case) ... 6-13

6.4.13 Send Camera Commands (Use Case) .. 6-13

6.4.14 Store Presets (Use Case) .. 6-13

6.4.15 Take Camera Offline (Use Case) ... 6-14

6.4.16 Take Monitor Ofline (Use Case) .. 6-14

6.4.17 Terminate Camera Control (Use Case) .. 6-14

6.4.18 View Monitor Assignments (Use Case)... 6-14

6.5 ManageCameraControl (Use Case Diagram) .. 6-15

6.5.1 Check If Camera Controlled (Use Case) .. 6-16

6.5.2 Check If Camera Local Monitor Display (Use Case) .. 6-16

6.5.3 Control Camera (Use Case) ... 6-16

6.5.4 Evaluate Camera Control Request (Use Case)... 6-16

6.5.5 Grant Camera Control (Use Case) ... 6-16

6.5.6 Manage Camera Control (Use Case) ... 6-16

6.5.7 Notify Operator of Camera Control Status (Use Case) .. 6-17

6.5.8 Override Camera Control (Use Case) .. 6-17

6.5.9 Poll Camera (Use Case) ... 6-17

6.5.10 Request Camera Control (Use Case) ... 6-17

6.5.11 Terminate Camera Control (Use Case) .. 6-18

6.6 R7VerifyNTCIPCameraCompatibility (Use Case Diagram) ... 6-19

6.6.1 Configure NTCIP Camera Compatibility Tester (Use Case) ... 6-20

6.6.2 Perform NTCIP Camera Compatibility Tests (Use Case) ... 6-20

6.6.3 Save NTCIP Camera Compatibility Test Results (Use Case) .. 6-20

6.6.4 Set Pan-Tilt Speed (Use Case) ... 6-20

CHART R7 Detailed Design ix 03/02/2011

6.6.5 Test Adjust Focus Camera Command (Use Case) ... 6-20

6.6.6 Test Adjust Iris Camera Command (Use Case) ... 6-20

6.6.7 Test Auto Focus Camera Command (Use Case).. 6-20

6.6.8 Test Auto Iris Camera Command (Use Case) .. 6-20

6.6.9 Test Go to Preset Camera Command (Use Case) .. 6-20

6.6.10 Test Pan Camera Command (Use Case) .. 6-21

6.6.11 Test Poll Camera Command (Use Case) .. 6-21

6.6.12 Test Power Camera On Off Command (Use Case) ... 6-21

6.6.13 Test Set Default Title Line One Camera Command (Use Case) .. 6-21

6.6.14 Test Set Default Title Line Two Camera Command (Use Case) ... 6-21

6.6.15 Test Set Preset Camera Command (Use Case) .. 6-21

6.6.16 Test Tilt Camera Command (Use Case) .. 6-21

6.6.17 Test Zoom Camera Command (Use Case) .. 6-21

6.7 SendCameraCommands (Use Case Diagram) ... 6-22

6.7.1 Control Camera (Use Case) ... 6-22

6.7.2 Control COHU 3955 Camera (Use Case) .. 6-23

6.7.3 Control NTCIP Camera (Use Case) ... 6-23

6.7.4 Control Surveyor VFT Camera (Use Case) ... 6-23

6.7.5 Execute Command (Use Case) .. 6-23

6.7.6 Execute Command Macro (Use Case) ... 6-23

6.7.7 Execute Simple Command (Use Case) .. 6-24

6.7.8 Process3955ControlRequests (Use Case) .. 6-24

6.7.9 Send Camera Commands (Use Case) .. 6-24

6.7.10 Send to Comm Port (Use Case) ... 6-24

6.7.11 Send to Encoder (Use Case) .. 6-24

6.7.12 SendToCommandProcessor (Use Case) .. 6-24

6.8 View NTCIP Camera Compatibility Test Results (Use Case) ... 6-25

6.8.1 Control Camera (Use Case) ... 6-25

6.8.2 Control COHU 3955 Camera (Use Case) .. 6-25

6.8.3 Control NTCIP Camera (Use Case) ... 6-25

6.8.4 Control Surveyor VFT Camera (Use Case) ... 6-26

6.8.5 Execute Command (Use Case) .. 6-26

6.8.6 Execute Command Macro (Use Case) ... 6-26

6.8.7 Execute Simple Command (Use Case) .. 6-26

6.8.8 Operator (Actor) .. 6-26

6.8.9 Process3955ControlRequests (Use Case) .. 6-26

6.8.10 Send Camera Commands (Use Case) .. 6-27

CHART R7 Detailed Design x 03/02/2011

6.8.11 Send to Comm Port (Use Case) ... 6-27

6.8.12 Send to Encoder (Use Case) .. 6-27

6.8.13 SendToCommandProcessor (Use Case) .. 6-27

7 Detailed Design – NTCIP Camera .. 7-28

7.1 Human-Machine Interface .. 7-28

7.1.1 Add/Edit NTCIP Camera ... 7-28

7.1.2 View NTCIP Camera Details... 7-29

7.1.3 Control NTCIP Camera ... 7-29

7.1.4 NTCIP Camera Compliance Tester ... 7-30

7.2 System Interfaces ... 7-33

7.2.1 Class Diagrams .. 7-33

7.2.1.1 VideoHighLevel (Class Diagram) ..7-33
7.2.1.2 VideoHighLevel-VideoSource (Class Diagram) ..7-41
7.2.1.3 VideoControl (Class Diagram) ...7-48

7.3 Camera Control Module ... 7-55

7.3.1 Class Diagrams .. 7-55

7.3.1.1 CameraControlModule (Class Diagram) ..7-55

7.3.2 Sequence Diagrams.. 7-67

7.3.2.1 CameraControlModule:AddCamera (Sequence Diagram) ...7-67
7.3.2.2 CameraControlModule:MoveToPreset (Sequence Diagram) ...7-68
7.3.2.3 CameraControlModule:SavePreset (Sequence Diagram) ...7-69
7.3.2.4 CameraControlModule:SetCameraConfiguration (Sequence Diagram)7-70
7.3.2.5 CameraControlModule:TakeCameraOffline (Sequence Diagram) ...7-71
7.3.2.6 Encoder:receive (Sequence Diagram) ...7-72
7.3.2.7 NTCIPCameraProtocolHdlr:adjPan (Sequence Diagram) ..7-73
7.3.2.8 NTCIPCameraProtocolHdlr:adjZoom (Sequence Diagram)...7-74
7.3.2.9 NTCIPCameraProtocolHdlr:calculateControlSpeeds (Sequence Diagram)7-75
7.3.2.10 NTCIPCameraProtocolHdlr:connect (Sequence Diagram)...7-76
7.3.2.11 NTCIPCameraProtocolHdlr:getZoomPosition (Sequence Diagram)7-77
7.3.2.12 NTCIPCameraProtocolHdlr:moveToPreset (Sequence Diagram) ..7-78
7.3.2.13 NTCIPCameraProtocolHdlr:poll (Sequence Diagram) ...7-79
7.3.2.14 NTCIPCameraProtocolHdlr:sendMessage (Sequence Diagram) ..7-80
7.3.2.15 NTCIPCameraProtocolHdlr:sendMessageForData (Sequence Diagram)7-81
7.3.2.16 NTCIPCameraProtocolHdlr:setLabelText (Sequence Diagram) ..7-82
7.3.2.17 NTCIPCameraProtocolHdlr:setPresetTitle (Sequence Diagram) ...7-83
7.3.2.18 NTCIPCameraProtocolhdlr:storePreset (Sequence Diagram) ..7-84

7.4 NTCIP Camera Compliance Tester ... 7-85

7.4.1 Class Diagrams .. 7-85

7.4.1.1 CameraNTCIPComplianceTesterClasses (Class Diagram) ..7-85

7.4.2 Sequence Diagrams.. 7-90

7.4.2.1 CameraNTCIPComplianceTester:PanLeft (Sequence Diagram) ..7-90

7.5 Device Utility .. 7-92

7.5.1 Class Diagrams .. 7-92

7.5.1.1 DeviceUtility (Class Diagram) ...7-92
7.5.1.2 PortLocatorClasses (Class Diagram) ..7-97

CHART R7 Detailed Design xi 03/02/2011

7.5.2 Sequence Diagrams.. 7-101

7.5.2.1 DataPortUtility:receive (Sequence Diagram) ... 7-101
7.5.2.2 DataPortUtility:receiveFromDirectPort (Sequence Diagram) .. 7-102
7.5.2.3 DataPortUtility:receiveFromTCPPort (Sequence Diagram) ... 7-103
7.5.2.4 DataPortUtility:send (Sequence Diagram) .. 7-104
7.5.2.5 NTCIPUtility:get (Sequence Diagram) ... 7-105
7.5.2.6 NTCIPUtility:getOEREncodedByteCommand (Sequence Diagram) ... 7-106
7.5.2.7 NTCIPUtility:set (Sequence Diagram) ... 7-107

8 Use Cases – SCAN Weather Integration ... 8-1

8.1 R7HighLevel (Use Case Diagram) .. 8-2

8.1.1 Configure TSS (Use Case) ... 8-3

8.1.2 Configure Video Sources (Use Case) .. 8-3

8.1.3 Configure Weather Settings (Use Case) .. 8-3

8.1.4 Export TSS Data (Use Case).. 8-3

8.1.5 Manage Camera (Use Case)... 8-4

8.1.6 Manage Traffic Events (Use Case) .. 8-4

8.1.7 Provide Weather Data to Internal Applications (Use Case) ... 8-4

8.1.8 Retrieve Weather Data From SCAN (Use Case) .. 8-4

8.1.9 View TSS on Map (Use Case) ... 8-4

8.2 ManageTrafficEvents (Use Case Diagram) ... 8-5

8.2.1 Add Text to Event History (Use Case) .. 8-5

8.2.2 Associate Event (Use Case) ... 8-5

8.2.3 Change Event Attributes (Use Case) ... 8-5

8.2.4 Change Event Type (Use Case) ... 8-6

8.2.5 Change Lane Direction (Use Case) .. 8-6

8.2.6 Close Event (Use Case) ... 8-6

8.2.7 Copy Traffic Event (Use Case) .. 8-6

8.2.8 Create Incident Event (Use Case) .. 8-6

8.2.9 Create Traffic Event (Use Case) .. 8-6

8.2.10 Display Weather Station Conditions (Use Case) ... 8-7

8.2.11 Edit Traffic Event Lane Configuration and Status (Use Case) ... 8-7

8.2.12 Export Priority Event List (Use Case) ... 8-7

8.2.13 Get Event History Text (Use Case) ... 8-7

8.2.14 Log Weather Station Data (Use Case) ... 8-7

8.2.15 Merge Traffic Events (Use Case) .. 8-7

8.2.16 Modify Traffic Event (Use Case) .. 8-8

8.2.17 Operator (Actor) .. 8-8

8.2.18 Preselect Road Surface Condition (Use Case) ... 8-8

8.2.19 Query Nearby Weather Station Data (Use Case) .. 8-8

CHART R7 Detailed Design xii 03/02/2011

8.2.20 Record Lane Closure (Use Case) ... 8-8

8.2.21 Record Organization Notification And Arrival (Use Case) ... 8-9

8.2.22 Record Resource Notification And Arrival (Use Case) ... 8-9

8.2.23 Respond to Traffic Event (Use Case) .. 8-9

8.2.24 Search EORS Permits (Use Case) .. 8-9

8.2.25 Search Traffic Events (Use Case) .. 8-9

8.2.26 Set EORS Permit for Planned Roadway Closure Event (Use Case) .. 8-9

8.2.27 Specify Event Location (Use Case) ... 8-10

8.2.28 Specify Expected Duration (Use Case) .. 8-10

8.2.29 Specify WebsiteTraffic Alert Settings (Use Case) ... 8-10

8.2.30 System (Actor) ... 8-10

8.2.31 Take Event Offline (Use Case) .. 8-10

8.2.32 View Lane Configuration and Status Textually (Use Case) ... 8-11

8.2.33 View Potential Duplicate Events (Use Case) ... 8-11

8.2.34 View Priority Event List (Use Case) ... 8-11

8.2.35 View Suggested EORS Permits (Use Case) .. 8-11

8.2.36 View Traffic Events (Use Case) .. 8-11

9 Detailed Design – SCAN Weather Integrations 9-12

9.1 Human-Machine Interface .. 9-12

Weather Integration ... 9-12

Traffic Event Details Page ..9-12

9.2 System Interfaces ... 9-15

9.2.1 Class Diagrams .. 9-15

9.2.1.1 TrafficEventManagement2 (Class Diagram) ..9-15

9.3 Traffic Event Module Package ... 9-21

9.3.1 Class Diagrams .. 9-21

9.3.1.1 TrafficEventModuleClassesR7 (Class Diagram) ..9-21

9.3.2 Sequence Diagrams.. 9-23

9.3.2.1 TrafficEventFactoryImpl:createTrafficEventHelper (Sequence Diagram)9-23
9.3.2.2 TrafficEventFactoryImpl:getWeatherService (Sequence Diagram) ...9-25
9.3.2.3 TrafficEventFactoryImpl:queryRoadSurfaceConditionWeatherInfoIfApplicable (Sequence

Diagram) 9-26
9.3.2.4 TrafficEventGroup:close (Sequence Diagram) ...9-27
9.3.2.5 TrafficEventGroup:handleRoadSurfaceConditionWeatherInfo (Sequence Diagram)9-28
9.3.2.6 TrafficEventGroup:queryRoadSurfaceWeatherInfo (Sequence Diagram)9-28

9.4 Utility Package ... 9-30

9.4.1 Class Diagrams .. 9-30

9.4.1.1 UtilityClasses3 (Class Diagram) ...9-30

9.4.2 Sequence Diagrams.. 9-32

9.4.2.1 SynchAsynchQueryUtil:executeTimeLimitedQuery (Sequence Diagram)9-32

9.5 Webservices Weather Module Package ... 9-34

CHART R7 Detailed Design xiii 03/02/2011

9.5.1 Class Diagrams .. 9-34

9.5.1.1 WeatherModuleClasses (Class Diagram) ...9-34

9.5.2 Sequence Diagrams.. 9-37

9.5.2.1 WeatherModule:initialize (Sequence Diagram) ..9-37
9.5.2.2 DataRefreshTask:run (Sequence Diagram)...9-38
9.5.2.3 WeatherDataManager:updateWeatherStationData (Sequence Diagram)9-39
9.5.2.4 WeatherDataRequestHandler:handleWeatherDataRequest (Sequence Diagram)9-40
9.5.2.5 WeatherDataRequestHandler:calculateRoadSurfaceConditions (Sequence Diagram)9-41

10 Deprecated Functionalities .. 10-1

10.1 CHART Device Editor... 10-1

10.1.1 View, Add, Update, Remove CHART Devices ... 10-1

11 Mapping To Requirements ... 11-1

12 Acronyms/Glossary .. 12-1

CHART R7 Detailed Design xiv 03/02/2011

Table of Figures
Figure 2-1 CHART and External Interfaces .. 2-5
Figure 2-2 R7 Server Deployment ... 2-6
Figure 2-3 R7 GUI Deployment .. 2-7
Figure 2-4 R7 ERD .. 2-22
Figure 4-1. R7HighLevel (Use Case Diagram) ... 8
Figure 4-2. MapAndGISUses (Use Case Diagram) ... 11
Figure 4-3. MapDeviceAndTrafficEventUses (Use Case Diagram) .. 18
Figure 4-4. ConfigureTSS (Use Case Diagram) .. 22
Figure 4-5. Data Exporter Synchronization (Use Case Diagram) .. 23
Figure 4-6 DisplayTSS (Use Case Diagram) ... 25
Figure 5-1 The Edit Map Display Options Link in the Zone Groups Configuration Section 26
Figure 5-2. The TSS Map Display Options Page. ... 27
Figure 5-3. Setting the TSS Bearing Using the Slider or the Map. ... 28
Figure 5-4. Zone Groups Organized by Display Direction. ... 5-1
Figure 5-5. Warning That a Zone Group is Being Changed to Displayable on Maps. .. 5-2
Figure 5-6. Updating the Zone Group Display Order by Using the Move In and Move Out Links. 5-3
Figure 5-7. Zone Group Tooltip Showing the Number, Name, and Direction. ... 5-3
Figure 5-8. Map Layer Selector Showing TSS Layers Selected. ... 5-4
Figure 5-9. Icons of TSSs in Different States on the Map. .. 5-5
Figure 5-10. TSS Tooltip and Callout Showing Number, Name, Direction, and Zone Groups. 5-6
Figure 5-11 TSSManagement (Class Diagram) ... 5-8
Figure 5-12 GUITSSDataClasses (Class Diagram) ... 5-16
Figure 5-13 chartlite.servlet.tss_classes (Class Diagram) ... 5-18
Figure 5-14 chartlite.servlet.tss:processUpdateZoneGroupDisplayDirection (Sequence Diagram) 5-21
Figure 5-15 chartlite.servlet.tss:processUpdateMapDisplayOptions (Sequence Diagram) 5-23
Figure 5-16 chartlite.servlet.tss:getEditTSSMapDisplayOptionsForm (Sequence Diagram) 5-25
Figure 5-17 MapClasses (Class Diagram) ... 5-26
Figure 5-18 MapReqHdlr:getHomePageMapDataJSON (Sequence Diagram) ... 5-28
Figure 5-19 :getTrafficEventJSON (Sequence Diagram) .. 5-29
Figure 5-20 :addJSONFeaturesForTSSLayers (Sequence Diagram) ... 5-30
Figure 5-21 MapReqHdlr:getCloseDevicesMapDataJSON (Sequence Diagram) ... 5-31
Figure 5-22 TSSManagementModulePkg (Class Diagram) .. 5-33
Figure 5-23 PolledTSSImpl:setMapDisplayOptions (Sequence Diagram) ... 5-40
Figure 5-24 DataSynchronization: HumanMachine .. 5-41
Figure 5-25 Data Exporter Synchronization (Class Diagram) ... 5-42
Figure 5-26 Data Exporter Synchronization (Sequence Diagram) .. 5-45
Figure 6-1. R7CameraUses (Use Case Diagram) .. 6-1
Figure 6-2 Display Camera (Use Case Diagram) .. 6-5
Figure 6-3 MaintainCamera (Use Case Diagram) ... 6-8
Figure 6-4ManageCamera (Use Case Diagram) .. 6-11
Figure 6-5 ManageCameraControl (Use Case Diagram) ... 6-15
Figure 6-6 R7VerifyNTCIPCameraCompatibility (Use Case Diagram) ... 6-19
Figure 6-7 SendCameraCommands (Use Case Diagram) .. 6-22
Figure 6-8 SendCameraCommands (Use Case Diagram) .. 6-25
Figure 7-1. NTCIP Camera Compliance Tester (Main Screen) ... 7-30
Figure 7-2 NTCIP Camera Compliance Tester (Connecting).. 7-31
Figure 7-3 NTCIP Camera Compliance Tester (Configuration) .. 7-32
Figure 7-4 VideoHighLevel (Class Diagram).. 7-34
Figure 7-5 VideoHighLevel-VideoSource (Class Diagram).. 7-42
Figure 7-6 VideoControl (Class Diagram) .. 7-48
Figure 7-7. CameraControlModule (Class Diagram) .. 7-56
Figure 7-8. CameraControlModule:AddCamera (Sequence Diagram).. 7-67
Figure 7-9. CameraControlModule:MoveToPreset (Sequence Diagram) ... 7-68
Figure 7-10. CameraControlModule:SavePreset (Sequence Diagram) ... 7-69

CHART R7 Detailed Design xv 03/02/2011

Figure 7-11. CameraControlModule:SetCameraConfiguration (Sequence Diagram) ... 7-70
Figure 7-12. CameraControlModule:TakeCameraOffline (Sequence Diagram) ... 7-71
Figure 7-13. Encoder:receive (Sequence Diagram) ... 7-72
Figure 7-14. NTCIPCameraProtocolHdlr:adjPan (Sequence Diagram) .. 7-73
Figure 7-15. NTCIPCameraProtocolHdlr:adjZoom (Sequence Diagram) ... 7-74
Figure 7-16. NTCIPCameraProtocolHdlr:calculateControlSpeeds (Sequence Diagram).. 7-75
Figure 7-17. NTCIPCameraProtocolHdlr:connect (Sequence Diagram) ... 7-76
Figure 7-18. NTCIPCameraProtocolHdlr:getZoomPosition (Sequence Diagram) .. 7-77
Figure 7-19. NTCIPCameraProtocolHdlr:moveToPreset (Sequence Diagram) .. 7-78
Figure 7-20. NTCIPCameraProtocolHdlr:poll (Sequence Diagram) ... 7-79
Figure 7-21. NTCIPCameraProtocolHdlr:sendMessage (Sequence Diagram) .. 7-80
Figure 7-22. NTCIPCameraProtocolHdlr:sendMessageForData (Sequence Diagram) ... 7-81
Figure 7-23. NTCIPCameraProtocolHdlr:setLabelText (Sequence Diagram) .. 7-82
Figure 7-24. NTCIPCameraProtocolHdlr:setPresetTitle (Sequence Diagram) ... 7-83
Figure 7-25. NTCIPCameraProtocolhdlr:storePreset (Sequence Diagram) .. 7-84
Figure 7-26 CameraNTCIPComplianceTesterClasses (Class Diagram) ... 7-85
Figure 7-27. CameraNTCIPComplianceTester:PanLeft (Sequence Diagram) .. 7-91
Figure 7-28. DeviceUtility (Class Diagram) .. 7-93
Figure 7-29. PortLocatorClasses (Class Diagram) .. 7-97
Figure 7-30. DataPortUtility:receive (Sequence Diagram) .. 7-101
Figure 7-31. DataPortUtility:receiveFromDirectPort (Sequence Diagram) .. 7-102
Figure 7-32. DataPortUtility:receiveFromTCPPort (Sequence Diagram) ... 7-103
Figure 7-33 DataPortUtility:send (Sequence Diagram) ... 7-104
Figure 7-34. NTCIPUtility:get (Sequence Diagram) ... 7-105
Figure 7-35. NTCIPUtility:getOEREncodedByteCommand (Sequence Diagram) ... 7-106
Figure 7-36. NTCIPUtility:set (Sequence Diagram) ... 7-107
Figure 8-1. R7HighLevel (Use Case Diagram) ... 8-2
Figure 8-2. ManageTrafficEvents (Use Case Diagram) .. 8-5
Figure 9-1 Roadway Conditions Section in Traffic Event ... 9-13
Figure 9-2 Detailed Roadway Conditions .. 9-14
Figure 9-3. TrafficEventManagement2 (Class Diagram) .. 9-15
Figure 9-4. TrafficEventModuleClassesR7 (Class Diagram) .. 9-21
Figure 9-5. TrafficEventFactoryImpl:createTrafficEventHelper (Sequence Diagram) ... 9-24
Figure 9-6. TrafficEventFactoryImpl:getWeatherService (Sequence Diagram) ... 9-25
Figure 9-7. TrafficEventFactoryImpl:queryRoadSurfaceConditionWeatherInfoIfApplicable (Sequence Diagram) .. 9-

26
Figure 9-8. TrafficEventGroup:close (Sequence Diagram) ... 9-27
Figure 9-9. TrafficEventGroup:handleRoadSurfaceConditionWeatherInfo (Sequence Diagram) 9-28
Figure 9-10. TrafficEventGroup:queryRoadSurfaceWeatherInfo (Sequence Diagram).. 9-29
Figure 9-11. UtilityClasses3 (Class Diagram) ... 9-30
Figure 9-12. SynchAsynchQueryUtil:executeTimeLimitedQuery (Sequence Diagram) .. 9-33
Figure 9-13. WeatherModuleClasses (Class Diagram) .. 9-34
Figure 9-14. WeatherModule:initialize (Sequence Diagram) .. 9-37
Figure 9-15. DataRefreshTask:run (Sequence Diagram) ... 9-38
Figure 9-16. WeatherDataManager:updateWeatherStationData (Sequence Diagram) .. 9-39
Figure 9-17. WeatherDataRequestHandler:handleWeatherDataRequest (Sequence Diagram) 9-40
Figure 9-18. WeatherDataRequestHandler:calculateRoadSurfaceConditions (Sequence Diagram) 9-42

CHART R7 Detailed Design 1-1 03/02/2011

1 Introduction

1.1 Purpose

This document describes the design of the software for CHART Release 7 and Mapping Release

6. This build provides:

 CHART Map Integration – Detector Bearing and Offset: CHART R7 will move

the TSS location editing feature from the Intranet map to CHART and will export

that information out of CHART and write it to the existing Intranet map database

tables. Both CHART and Mapping are affected by this featue.

 Support for the NTCIP Camera control protocol: CHART R7 will allow NTCIP

cameras to be added to the system and to be configured, viewed, and controlled.

A separate NTCIP Camera Compliance Tester application is also being developed

for use by camera vendors to allow them to determine if their NTCIP cameras can

be used in the CHART system. Only CHART is affected by this feature.

 SCAN Integration: CHART R7 will add a weather station feature to CHART.

The primary purpose is to automatically populate the Roadway Conditions field

within Traffic Events. Only CHART is affected by this featue.

 Shift Handoff Report: CHART R7 will include a Joint Application Design (JAD)

session with SHA representatives to determine the basic requirements for an

improved Shift Handoff Report. The CSC team will investigate alternative

products to replace the existing Wiki that will better allow the requirements of the

Shift Handoff Report to be met with minimal or no custom coding required. If a

product can be identified, a prototype of the selected product as a Shift Handoff

Report will be developed and clarified in three subsequent JAD sessions. Only

CHART is affected by this feature.

1.2 Objectives

The main objective of this detailed design document is to provide software developers with a

framework in which to implement the requirements identified in the CHART R7/Mapping R6

Requirements document. A matrix mapping requirements to the design is presented in Section

15 (Mapping to Requirements).

1.3 Scope

This design is limited to Release 7 of the CHART system and Release 6 of the Mapping system,

including iMAP. It addresses both the design of the server components of CHART and the

Graphical User Interface (GUI) components of CHART to support the new features being added.

CHART R7 Detailed Design 1-2 03/02/2011

Design changes for the Intranet Map and iMAP are included. This design does not include

designs for components implemented in earlier releases of the CHART system.

1.4 Design Process

The design was created by capturing the requirements of the system in UML Use Case diagrams.

Class diagrams were generated showing the high level objects that address the Use Cases.

Sequence diagrams were generated to show how each piece of major functionality will be

achieved. This process was iterative in nature – the creation of sequence diagrams sometimes

caused re-engineering of the class diagrams, and vice versa.

1.5 Design Tools

The work products contained within this design will be extracted from the Tau Unified Modeling

Language (UML) Suite design tool. Within this tool, the design will be contained in the CHART

project, Release 7, Analysis phase and System Design phase. And also in the CHART Mapping

project, Release 6, Analysis phase and System Design phase.

1.6 Work Products

The final CHART Release 7/Mapping Release 6 design consists of the following work products:

 Use Case diagrams that capture the requirements of the system

 Human-Machine Interface section which provides descriptions of the screens that are

changing or being added in order to allow the user to perform the described uses.

 UML Class diagrams, showing the software objects which allow the system to

accommodate the uses of the system described in the Use Case diagrams

 UML Sequence diagrams showing how the classes interact to accomplish major

functions of the system

 Requirement Verification Traceability Matrix that shows how this design meets the

documented requirements for this feature

This document incorporates the four features by providing a Use Cases and Detailed Design

section for each feature. For instance, for Integrated Map – Detector Bearing, Use Cases are in

Section 4, and Detailed Design (including Human-Machine Interface, Class Diagrams, and

Sequence Diagrams) are in Section 5. Sections 6 & 7 cover NTCIP Camera support, and so on.

CHART R7 Detailed Design 2-1 03/02/2011

2 Architecture

The sections below discuss specific elements of the architecture and software components that

are created, changed, or used in CHART Release 7/Mapping Release 6.

2.1 Network/Hardware

CHART Release 7/Mapping Release 6 features do not impact the network or hardware

architecture of the CHART or Mapping Systems.

2.2 Software

CHART uses the Common Object Request Broker Architecture (CORBA) as the base

architecture, with custom built software objects made available on the network allowing their

data to be accessed via well defined CORBA interfaces. Communications to remote devices use

the Field Management Server (FMS) architecture. Newer external interfaces such as the User

Management web service, Data Exporter, and GIS service employ a web services architecture

combining an HTTP request/response structure to pass XML messages.

Except where noted in the subsections below, CHART Release 7/Mapping Release 6 features do

not impact the software architecture of the CHART System.

 For CHART R7, there is a new CHART Weather Web Service that will provide

weather related data to internal CHART applications. This Web Service will retrieve

data from the SCAN system using an existing / modified interface via the

CHARTWeb Database (see database design section).

2.2.1 COTS Products

2.2.1.1 CHART

CHART uses numerous COTS products for both run-time and development. There are no new

products being added in Release 7.

The following table contains existing COTS products that have not changed for CHART Release

7:

Product Name Description
Apache ActiveMQ CHART uses this to connect to RITIS JMS queues

Apache Jakarta Ant CHART uses Apache Jakarta Ant 1.6.5 to build CHART

applications and deployment jars.

Apache Tomcat CHART uses Apache Tomcat 6.0.29 as the GUI web

server.

Apache XML-RPC CHART uses the apache xmlrpc java library 3.1.2

protocol that uses XML over HTTP to implement remote

procedure calls. The video Flash streaming “red button”

(“kill switch”) API uses XML over HTTP remote

CHART R7 Detailed Design 2-2 03/02/2011

Product Name Description
procedure calls.

Attention! CC CHART uses Attention! CC Version 2.1 to provide

notification services.

Attention! CC API CHART uses Attention! CC API Version 2.1 to interface

with Attention! CC.

Attention! NS CHART uses Attention! NS Version 7.0 to provide

notification services.

Bison/Flex CHART uses Bison and Flex as part of the process of

compiling binary macro files used for performing camera

menu operations on Vicon Surveyor VFT cameras.

bsn.autosuggest The EORS integration feature uses version 2.1.3 of the

bsn.autosuggest JavaScript code from

brandspankingnew.net. This tool is freely available and

is included as source code in the CHART GUI. It

provides a simple JavaScript tool that can be associated

with a text entry field. When the user types characters in

the field, the tool waits until there has been no typing for

a configurable number of milliseconds (to make sure the

user is done typing) then places an AJAX call to a web

server which can return suggested results that match the

user entered text. The bsn.autosuggest tool then parses

the results (XML or JSON) and displays a UI element

that shows the user the suggestions and lets them select

one of them by clicking on it. If a suggested element is

selected by the user, a configurable JS method is invoked

to allow the application to use the selected suggestion.

CoreTec Decoder Control CHART uses a CoreTec supplied decoder control API for

commanding CoreTec decoders.

Dialogic API CHART uses the Dialogic API for sending and receiving

Dual Tone Multi Frequency (DTMF) tones for HAR

communications.

ESRI's ArcGIS Sever CHART uses version 9.3 to serve maps over the Internet.

ESRI's MapObjects CHART uses the Map Objects 2.4 for spatial algorithms.

Flex2 SDK The CHART GUI will use the Flex2 SDK, version 3.1 to

provide the Flex compiler, the standard Flex libraries, and

examples for building Flex applications.

GIF89 Encoder Utility classes that can create .gif files with optional

animation. This utility is used for the creation of DMS

True Display windows.

JAXB CHART uses the jaxb java library to automate the tedious

task of hand-coding field-by-field XML translation and

validation for exported data.

JDOM CHART uses JDOM b7 (beta-7) dated 2001-07-07.

JDOM provides a way to represent an XML document for

CHART R7 Detailed Design 2-3 03/02/2011

Product Name Description
easy and efficient reading, manipulation, and writing.

JacORB CHART uses a compiled, patched version of JacORB

2.2.4. The JacORB source code, including the patched

code, is kept in the CHART source repository.

Java Run-Time (JRE) CHART uses 1.6.0_21

JavaService CHART uses JavaService to install the server side Java

software components as Windows services.

JAXEN CHART uses JAXEN 1.0-beta-8 dated 2002-01-09. The

Jaxen project is a Java XPath Engine. Jaxen is a universal

object model walker, capable of evaluating XPath

expressions across multiple models.

JoeSNMP CHART uses JoeSNMP version 0.2.6 dated 2001-11-11.

JoeSNMP is a Java based implementation of the SNMP

protocol. CHART uses for commanding iMPath MPEG-

2 decoders and for communications with NTCIP DMSs.

JSON-simple CHART uses the JSON-simple java library to

encode/decode strings that use JSON (JavaScript Object

Notation).

JTS CHART uses the Java Topology Suite (JTS) version 1.8.0

for geographical utility classes.

Log4J CHART uses the log4J version 1.2.15 for logging

purposes.

NSIS CHART uses the Nullsoft Scriptable Installation System

(NSIS), version 2.20, as the server side installation

package.

Nuance Text To Speech For text-to-speech (TTS) conversion CHART uses a TTS

engine that integrates with Microsoft Speech Application

Programming Interface (MSSAPI), version 5.1. CHART

uses Nuance Vocalizer 4.0 with Nuance SAPI 5.1

Integration for Nuance Vocalizer 4.0.

OpenLayers The Integrated Map feature uses the Open Layers

JavaScript API 2.8 (http://openlayers.org/) in order to

render interactive maps within a web application without

relying on vendor specific software. Open Layers is an

open source product released under a BSD style license

which can be found at

(http://svn.openlayers.org/trunk/openlayers/license.txt).

Oracle CHART uses Oracle 10.1.0.5 as its database and uses the

Oracle 10G JDBC libraries (ojdbc1.4.jar) for all database

transactions.

O’Reilly Servlet Provides classes that allow the CHART GUI to handle

CHART R7 Detailed Design 2-4 03/02/2011

Product Name Description
file uploads via multi-part form submission.

Prototype Javascript

Library

The CHART GUI uses the Prototype JavaScript library,

version 1.6.0.3, a cross-browser compatible JavaScript

library provides many features (including easy Ajax

support).

SAXPath CHART uses SAXPath 1.0-beta-6 dated 2001-09-27.

SAXPath is an event-based API for XPath parsers, that is,

for parsers which parse XPath expressions.

SQLServer JDBC Driver CHART uses this driver to lookup GIS related data and

also to store Location Aliases in SQL Server databases.

Velocity Template Engine Provides classes that CHART GUI uses in order to create

dynamic web pages using velocity templates, CHART

uses Velocity version 1.6.1 and tools version 1.4.

Vicon V1500 API CHART uses a Vicon supplied API for commanding the

ViconV1500 CPU to switch video on the Vicon V1500

switch

2.2.1.2 Mapping

There are no new COTS or COTS upgrades for Mapping Release 6. The ESRI COTS

(MapObjects API v 2.4 and ArcSDE v 9.3) will be used. The ArcSDE command line is used to

export the original (shape file) spatial table to the CHARTBG (ArcSDE enterprise SDE)

database.

2.2.2 Deployment /Interface Compatibility

2.2.2.1 CHART

2.2.2.1.1 External Interfaces

This section describes the external interfaces being added in Release 7 of the CHART system

and Release 6 of the Mapping application.

http://www.garshol.priv.no/xmltools/standard/XPath.html

CHART R7 Detailed Design 2-5 03/02/2011

Figure 2-1 CHART and External Interfaces

The external interfaces modified/added for R7 are:

1. The R7 Integrated map feature changes the ways that a Detector’s bearing and zone groups

can be configured. Thus it impacts the CHART Data Exporter and all clients of the CHART

Data Exporter by altering the exported XML that describes detector configurations. The

CHART Data Exporter Interface Control Document (ICD) has been updated to reflect these

changes.

2. For R7, CHAR Twill read whether related data from the SCAN databases.

CHART R7 Detailed Design 2-6 03/02/2011

Server and GUI deployment diagrams are shown in the next two figures. The Server

Deployment diagram depicts the new weather integration web service and notes changes to the

DataExporter and ExportClient for the integrated Map – Detector bearing feature. There are no

changes to the GUI deployment for R7.

CORBA Trading Service

CORBA Event Services

User Manager Service

DMS Service

HAR Service

TSS Service

Message Utility Service

Video Service

EORS Service

See GUI Deployment Diagram
for details.

Web Server

Weather Web Service

Toll Rate Import Service

Travel Route Service

Alert Service

Runs on one
primary server and
one backup server

Schedule Service

Field Management Server

Traffic Event Service

Roadway Location Lookup Service
--

Communications Service

New For R7:
CHART Weather Web Service

Watchdog Service 1

Geo Area Module

Video Device
[Cameras Monitors]

Watchdog Service 2

EORS Server

Firewall

Oracle RDBMS Service

EORS DB

RITIS Service

INRIX Import Service

Field Devices
[DMSs HARs SHAZAMs TSSs]

Vector

Notification Service

CHART Mapping DB Server

Mapping DB SQL Server

Tomcat

CHART Mapping Application Server

GIS Service

Export Client Service

CHART Mapping Service

Firewall

GIS Lane Service

Data Exporter Server (internal)

Notification Server

Data Export Service

Data Exporter Server (external)

COTS Notification Tool

For R7, External detectors and d
Detector Bearing exported,
written to CHARTWeb DB

Data Exporter Service

Firewall

Runs on one
primary server and
one backup server

INRIX Web Service

RITIS System

Email-Pager Providers

UserManagerWebService

Tomcat

HTTPSHTTPS

JMSJMS

IIOPIIOP

HTTPHTTP

MSSQL
Linked Server

MSSQL
Linked Server

TCPIP JDBCTCPIP JDBC

TCPIPTCPIP

HTTPHTTP

HTTPHTTP

IIOPIIOP

HTTPSHTTPS

IIOPIIOP

IIOPIIOP

TCPIP-JDBCTCPIP-JDBC

IIOPIIOP

ISDN POTS
Telephony

ISDN POTS
Telephony

COTSCOTS

TCPIPTCPIP

COTSCOTS

IIOPIIOP

Figure 2-2 R7 Server Deployment

CHART R7 Detailed Design 2-7 03/02/2011

Operator Workstation

Internet Explorer

Java 5 Plug In

Audio Recording Applet

Adobe Flash Player 9

GUI Flex2 Application

GUI Web Server

Microsoft IIS

Apache Tomcat

CHART GUI Servlet

Lane Editor
Web Service

See Server Deployment Diagram
for more details.

CHART Application Server

CHART Mapping Application Server

CHART Application Server

GIS Lane Config Service

CHART Mapping Service

CORBA Trading Service

CHART Export Client Service

CORBA Event Service

CHART Services

CHART Database Server

Oracle RDBMS Service

TCPIP-JDBCTCPIP-JDBC

HTTPS-XMLHTTPS-XML
HTTPS-XMLHTTPS-XML

TCPIP-JDBCTCPIP-JDBC

TCPIP - JDBCTCPIP - JDBC

HTTPS-HTMLHTTPS-HTML

TCPIP-JDBCTCPIP-JDBC

HTTPS-JSONHTTPS-JSON

HTTPSHTTPS

HTTPS-XMLHTTPS-XML

IIOPIIOP

IIOPIIOP

Figure 2-3 R7 GUI Deployment

2.2.2.1.2 Internal Interfaces

This section describes the internal interfaces being added or modified in Release 7of the CHART

system.

1. The R7 Integrated Map Detector Bearing feature utilizes the existing GUI interface. It

changes only the forms that are used by operators to describe detector configuration and

map display options. The CHART system IDL has been altered to allow the GUI to pass

the new configuration information for the Detector and its constituent zone groups to the

TSS Service for persistence and update of other services such as the CHART Data

Exporter.

2. The R7 SCAN Weather Integration enhances the GUI by supplying pre-population of a

Traffic Event’s Road Conditions and the display of additional weather data details as

described in the Human Machine Interface section. The CHART system IDL has been

altered to support these changes

2.2.2.2 Mapping

There are no changes to the existing interfaces for Mapping Release 6.

2.3 Security

This section describes the security being added or modified in Release 7 of the CHART system.

Unless otherwise noted, features being added for CHART Release 7/Mapping Release 6 do not

change security aspects of the CHART or Mapping systems.

CHART R7 Detailed Design 2-8 03/02/2011

2.4 Data

CHART Release 7 will be tested with the currently fielded Oracle database patches. Mapping

Release 6 will be tested with the currently fielded SQLServer database patches.

2.4.1 Data Storage

The CHART System stores most of its data in an Oracle database. Additionally the Integrated

Map feature adds the ability to store location aliases to the spatial SQL Server database. Some

data is stored in flat files on the CHART servers.

The Mapping Application stores and reads its data from a SQLServer datasbase.

This section describes all of these types of data.

2.4.1.1 Database

2.4.1.1.1 Database Architecture

Except as noted CHART Release 7/Mapping Release 6 features do not impact the overall

architecture of the CHART database.

2.4.1.1.2 Logical Design

2.4.1.1.2.1 CHART Entity Relationship Diagram (ERD)

CHART Database entity relationship diagrams are shown below in the multiple pages of figures

labeled collectively as Figure 2-5.

CHART R7 Detailed Design 2-9 03/02/2011

CHART R7 Detailed Design 2-10 03/02/2011

CHART R7 Detailed Design 2-11 03/02/2011

CHART R7 Detailed Design 2-12 03/02/2011

CHART R7 Detailed Design 2-13 03/02/2011

CHART R7 Detailed Design 2-14 03/02/2011

CHART R7 Detailed Design 2-15 03/02/2011

CHART R7 Detailed Design 2-16 03/02/2011

CHART R7 Detailed Design 2-17 03/02/2011

CHART R7 Detailed Design 2-18 03/02/2011

CHART R7 Detailed Design 2-19 03/02/2011

CHART R7 Detailed Design 2-20 03/02/2011

CHART R7 Detailed Design 2-21 03/02/2011

CHART R7 Detailed Design 2-22 03/02/2011

Figure 2-4 R7 ERD

CHART R7 Detailed Design 2-23 03/02/2011

2.4.1.1.2.2 Function to Entity Matrix Report

The Create, Retrieve, Update, Delete (CRUD) matrix cross-references business functions to

entities and shows the use of the entities by those functions. This report will be generated as part

of the CHART O&M Guide.

2.4.1.1.2.3 Table Definition Report –

In existing tables shown below:

 Deleted columns/constraints marked with a minus sign (“-”)

 Modified columns/constraints marked with an asterisk (“*”)

 New columns/constraints marked with a plus sign (“+”)

2.4.1.1.2.3.1 Tables Modified for the Integrated Map – Detector Bearing feature

2.4.1.1.2.3.1.1 CHART

TSS Table

 (+) DISPLAY_BEARING NUMBER(10) DEFAULT -1 NOT NULL

 (+) CONSTRAINT display_bearing_ck CHECK (DISPLAY_BEARING BETWEEN -1 and

359)

TSS Zone Group Table

 (+) DISPLAY_TYPE NUMBER(1) DEFAULT 0 NOT NULL,

 (+) DISPLAY_ORDER NUMBER(10) DEFAULT 1 NOT NULL,

 (+) CONSTRAINT display_type_ck CHECK (DISPLAY_TYPE BETWEEN 0 and 2).

2.4.1.1.2.3.1.2 Mapping

tss_devices (table)

“TSSSiteID” column is dropped.

tss_zones (table)

Integer column “DisplayOrder” is added to indicate the zone group relative to the other zone

groups of the same detector that are oriented the same way. Lower values indicate that this zone

group is closer to the tss lat/lon position while larger values indicate that this zone group is

further away.

“DirectionText” is dropped. Use “description” instead.

Bit field column “UpdateFlag” is added to indicate when the zone group record is newly added

or when the bearing of the zone is updated.

CHART R7 Detailed Design 2-24 03/02/2011

G_TSSSITE (spatial table)

Instead of using previously defined “TSSSiteID” as the identifier, a unique 32 characters device

id which is used by CHART will be used as the identifier.

2.4.1.1.2.3.2 Tables Modified for the NTCIP Camera feature

The NTCIP Camera feature requires changes to the CAMERA table. R7 will add ten new

columns to the Camera table. Theses are marked with plus signs (“+”) in the following table:

 Name Null? Type

 --- -------------

 DEVICE_ID NOT NULL CHAR(32)

 CAMERA_MODEL_ID NOT NULL NUMBER(3)

 ORG_ORGANIZATION_ID NOT NULL CHAR(32)

 DEVICE_NAME NOT NULL VARCHAR2(50)

 LOCATION_PROFILE_TYPE NUMBER(3)

 LOCATION_PROFILE_ID CHAR(32)

 TMDD_CCTV_IMAGE NUMBER(2)

 CAMERA_NUMBER NUMBER(5)

 CAMERA_CONTROLLABLE NOT NULL NUMBER(1)

 TMDD_CONTROL_TYPE NUMBER(2)

 TMDD_REQUEST_COMMAND_TYPES NOT NULL NUMBER(5)

 ENABLE_DEVICE_LOG NOT NULL NUMBER(1)

 OLD_VIDEO_CONNECTION_ID VARCHAR2(32)

 OLD_VIDEO_CONNECTION_TYPE NUMBER(2)

 NO_VIDEO_AVAIL_INDICATOR NOT NULL NUMBER(1)

 DEVICE_LOCATION_DESC VARCHAR2(50)

 TMDD_DEVICE_NAME VARCHAR2(50)

 POLL_INTERVAL_CONTROLLED_SECS NUMBER(5)

 POLLING_ENABLED_UNCONTROLLED NUMBER(1)

 DEFAULT_CAMERA_TITLE VARCHAR2(24)

 DEFAULT_CAMERA_TITLE_LINE2 VARCHAR2(24)

 CONTROL_CONNECTION_TYPE NUMBER(1)

 CONTROL_CONNECTION_ID CHAR(32)

 POLL_INTERVAL_UNCTRLD_SECS NUMBER(4)

 DB_CODE VARCHAR2(1)

 CREATED_TIMESTAMP DATE

 UPDATED_TIMESTAMP DATE

 DSP_STATUS_ENABLED NUMBER(1)

 DSP_STATUS_LENGTH NUMBER(5)

 DISPLAY_CAMERA_ON_PUBLIC_MAP NUMBER(1)

 DISPLAY_CAMERA_ON_INTRANET_MAP NUMBER(1)

 MAINT_ORGANIZATION_ID CHAR(32)

+SMNP_COMMUNITY_STRING VARCHAR2(30)

+HDLC_FRAME_REQUIRED NUMBER(1)

+MINIMUM_PAN_SPEED NUMBER(3)

+MAXIMUM_PAN_SPEED NUMBER(3)

+MINIMUM_TILT_SPEED NUMBER(3)

CHART R7 Detailed Design 2-25 03/02/2011

+MAXIMUM_TILT_SPEED NUMBER(3)

+ZOOM_SPEED NUMBER(3)

+FOCUS_SPEED NUMBER(3)

+MIN_ZOOM_POSITION NUMBER(5)

+MAX_ZOOM_POSITION NUMBER(5)

2.4.1.1.2.3.3 Tables Modified for the SCAN Weather Integration Feature

The weather information will be stored in a single new field in the EVENT table, in JSON

format to represent the data for the selected weather station and sensor data.

Name Null? Type

 --- -------------

EVENT_ID NOT NULL CHAR(32)

LANE_CONFIG_ID CHAR(32)

DB_CODE VARCHAR(1)

EVENT_CODE NOT NULL NUMBER(3)

EORS_TRACKING_NUMBER VARCHAR2(255)

CEN_CENTER_ID CHAR(32)

CEN_ORIGINATING_CENTER_ID CHAR(32)

PRIMARY_FLAG NUMBER(1)

LICENSE_PLATE_INFO VARCHAR2(52)

VEHICLE_INFO VARCHAR2(40)

OFFLINE_IND NUMBER(1)

MAX_QUEUE_LENGTH NUMBER(5)

EVENT_STATUS_CODE NUMBER(3)

SCENE_CLEARED_TIMESTAMP DATE

DELAY_CLEARED_TIMESTAMP DATE

CONFIRMED_TIMESTAMP DATE

FALSE_ALARM_IND NUMBER(1)

EVENT_CLOSED_DATE DATE

EVENT_OPEN_DATE DATE(7)

SOURCE_CODE NUMBER(3)

HAZMAT_CODE NUMBER(1)

INCIDENT_CODE NUMBER(3)

WEATHER_CLEANUP_INDICATOR NUMBER(1)

WEATHER_EVACUATION_INDICATOR NUMBER(1)

PAVEMENT_CONDITION_CODE NUMBER(3)

UPDATED_TIMESTAMP DATE(7)

OTHER_DESCRIPTION VARCHAR2(60)

DESCRIPTION VARCHAR2(512)

SOURCE_DESCRIPTION VARCHAR2(60)

LANE_STATE_DESCRIPTION VARCHAR2(1024)

EVENT_STILL_OPEN_REMINDER_TIME DATE

DISPLAY_WEBSITE_ALERT NUMBER(1)

WEBSITE_ALERT_TEXT VARCHAR2(3000)

DESCRIPTION_OVERRIDDEN NUMBER(1)

AUX_DESCRIPTION VARCHAR2(512)

EVENT_INIT_USER_NAME VARCHAR2(40)

EVENT_INIT_CENTER_ID CHAR(32)

EVENT_INIT_SCHEDULE_ID CHAR(32)

EVENT_INIT_EXT_SYSTEM VARCHAR2(35)

EVENT_INIT_EXT_AGENCY VARCHAR2(35)

EVENT_INIT_EXT_EVENT VARCHAR2(35)

CHART R7 Detailed Design 2-26 03/02/2011

EVENT_STILL_OPEN_REL_REM_TIME NUMBER(8)

PENDING_EVENT_CREATION_TIME DATE

PENDING_EVENT_LAST_USED_TIME DATE

EXTERNAL_EVENT_IND NUMBER(1)

EXTERNAL_INTERESTING_IND NUMBER(1)

PUBLIC_DESCRIPTION VARCHAR2(512)

OWNING_ORGANIZATION CHAR(32)

PUBLIC_INCIDENT_CODE NUMBER(3)

REGIONAL_FLAG NUMBER(1)

(+)WEATHER_INFO_JSON VARCHAR2(1024)

2.4.1.1.2.4 PL/SQL Module Definition and Database Trigger Reports

There are no new PL/SQL modules for CHART R7.

2.4.1.1.2.5 Database Size Estimate - provides size estimate of current design

There are no changes for any significance to the database size for R7.

2.4.1.1.2.6 Data Distribution

There are no changes to data distribution for R7.

2.4.1.1.2.7 Database Replication

There are no changes to database replication for R7.

2.4.1.1.2.8 Archival Migration

There are no changes to archival migration for R7.

2.4.1.1.2.9 Database Failover Strategy

There are no changes to the database failover strategy for R7.

2.4.1.1.2.10 Reports

No reports will be added or updated for R7. Since R5, the CHART reporting function has been

transferred to University of Maryland.

2.4.1.2 CHART Flat Files

The following describes the use of flat files in CHART.

2.4.1.2.1 Service Registration Files

There are no new Java services and therefore no new service registration files for CHART R7.

2.4.1.2.2 Service Property Files

Except as noted, there are no new service property files for CHART R7.

CHART R7 Detailed Design 2-27 03/02/2011

2.4.1.2.3 GUI Property Files

There are only minor updates to the GUI properties file in its WEB-INF directory for CHART

R7.

2.4.1.2.4 Arbitration Queue Storage Files

There are no changes to Arbitration Queue Storage Files for R7.

2.4.1.2.5 Device Logs

There are no changes to Device Log Files for R7.

2.4.1.2.6 Traffic Sensor Raw Data Logs

There are no changes to Traffic Sensor Raw Data Log Files for R7.

2.4.1.2.7 Service Process Logs

All CHART services write to a process log, used to provide a historical record of activity

undertaken by the services. These logs are occasionally referenced by software engineering

personnel to diagnose a problem or reconstruct a sequence of events leading to a particular

anomalous situation. These logs are automatically deleted by the system after a set period of

time defined by the service’s properties file, so they do not accumulate infinitely. These files are

stored in the individual service directories and are named by the service name and date, plus a

“.txt” extension. These logs are typically read only by software engineering personnel. Except

where noted, there are no changes for service process logs for R7 features.

2.4.1.2.8 Service Error Logs

All CHART services write to an error log, used to provide detail on certain errors encountered by

the services. Most messages, including most errors, are captured by the CHART software and

written to the process logs, but certain messages (typically produced by the Java Virtual Machine

itself, by COTS, or DLLs) cannot be captured by CHART Software and instead are captured in

these "catch-all" logs. Errors stored in these logs are typically problems resulting from a bad

installation; once the system is up and running, errors rarely appear in these error logs.

Debugging information from the JacORB COTS, which is not usually indicative of errors, can

routinely be found in these error logs, as well. These log files can be reviewed by software

engineering personnel to diagnose an installation problem or other type of problem. These logs

are automatically deleted by the system after a set period of time defined by the service's

properties file, so they do not accumulate infinitely. These files are stored in the individual

service directories and are named by the service name and date, plus an ".err" extension. These

logs are typically read only by software engineering personnel. Except where noted, there are no

changes for service error logs for R7 features.

2.4.1.2.9 GUI Process Logs

Like the CHART background services, the CHART GUI service also writes to a process log file,

used to provide a historical record of activity undertaken by the process. These GUI process logs

are occasionally referenced by software engineering personnel to diagnose a problem or

reconstruct a sequence of events leading to a particular anomalous situation. These logs are

CHART R7 Detailed Design 2-28 03/02/2011

automatically deleted by the system after a set period of time defined by the GUI service’s

properties file, so they do not accumulate infinitely. These files are stored in the

chartlite/LogFiles/ directory under the WebApps/ directory in the Apache Tomcat

installation area. They are named by the service name (“chartlite”) and date, plus a “.txt”

extension. These logs are typically read only by software engineering personnel. Additional log

files written by the Apache Tomcat system itself are stored in the log/ directory in the Apache

Tomcat installation area.

 R7 GUI changes do not change the way the GUI process logs operate.

2.4.1.2.10 FMS Port Configuration Files

The CHART Communications Services read a Port Configuration file, typically named

PortConfig.xml, upon startup, which indicates which ports are to be used by the service and

how they are to be initialized. A Port Configuration Utility is provided which allows for

addition, removal of ports and editing of initialization parameters. As indicated by the extension,

these files are in XML format. This means these files are hand-editable, although the Port

Configuration Utility allows for safer, more controlled editing. The Port Configuration files are

typically modified only by software engineers or telecommunications engineers.

 There are no changes to this section for the any of the R7 features.

2.4.1.2.11 Watchdog Configuration Files

The watchdog configuration files are updated to provide monitoring and restarting of the

CHART Lane Configuration Editor Web Service and User Management Web Service.

2.4.2 Database Design

Changes made to the CHART database design for Release 7 features are described below.

2.4.2.1 Integrated Map – Detector Bearing

2.4.2.1.1 CHART

-Adds DISPLAY_BEARING column to the TSS table. This column is constrained to integer

values between -1 and 359. A value of -1 indicates that the TSS has no defined bearing.

A value between 0 and 359 indicates the bearing rotation for the TSS where a value of 0

means due east and values grow counter clockwise such that a value of 90 is due north

and a value of 359 is 1 degree South of due east.

-Adds DISPLAY_TYPE column to the TSS_ZONE_GROUP table. This column is

constrained to the values 0 (do not display), 1 (display using arrow that points to TSS

display bearing) and 2 (display using arrow that points 180 degrees opposed to TSS

bearing).

-Adds DISPLAY_ORDER column to the TSS_ZONE_GROUP table. This column provides

an ordinal that allows the zone group to be ordered relative to other zone groups that have

the same display type. Lower values are displayed closer to the TSS lat/lon position and

higher values are displayed further away from the TSS coordinate.

CHART R7 Detailed Design 2-29 03/02/2011

-A new script will be implemented to migrate zone group bearings from the CHARTWeb

database into the CHART database.

2.4.2.1.2 Intranet Mapping

tss_devices (table)

“TSSSiteID” column is dropped.

tss_zones (table)

Integer column “DisplayOrder” is added to indicate the zone group relative to the other zone

groups of the same detector that are oriented the same way. Lower values indicate that this zone

group is closer to the tss lat/lon position while larger values indicate that this zone group is

further away.

“DirectionText” is dropped. Use “description” instead.

Bit field column “UpdateFlag” is added to indicate when the zone group record is newly added

or when the bearing of the zone is updated.

G_TSSSITE (spatial table)

Instead of using previously defined “TSSSiteID” as the identifier, a unique 32 characters device

id which is used by CHART will be used as the identifier.

GV_TSS (view)

GV_TSS is updated to reflect changes made in G_TSSSITE, tss_devices and tss_zones tables.

vw_TSS (view)

vw_TSS is updated to reflect changes made in G_TSSSITE, tss_devices and tss_zones tables.

tss_add_zone.sql (store procedure)

Additional process is to add the tss_add_zone store procedure to determine when a tss zone is

newly added or when the bearing of the zone is updated.

tss_remap_site_id_wl.sql (store procedure)

tss_remap_site_id_wl.sql is updated to reflect changes made in tss_devices table.

tss_remap_site_zones_wl.sql (store procedure)

tss_remap_site_zones_wl.sql is updated to reflect changes made in tss_zones table.

CHART R7 Detailed Design 2-30 03/02/2011

Mobile_Count_Home.sql (store procedure)

Mobile_Count_Home.sql is updated to reflect changes made in G_TSSSITE table.

Mobile_Tss_Data.sql (store procedure)

Mobile_Tss_Data.sql is updated to reflect changes made in G_TSSSITE table.

fn_TSS_Tooltip.sql (function)

fn_TSS_Tooltip.sql is updated to reflect changes made in vw_TSS view.

fn_TSSRange_Tooltip.sql (function)

fn_TSSRange_Tooltip.sql is updated to reflect changes made in vw_TSS view.

2.4.2.2 NTCIP Camera Support

The CAMERA table in the CHART R7 database will have 10 new columns as shown above.

2.4.2.3 SCAN Weather Integration

The SCAN Weather Integration feature will utilize an existing table in the CHARTWeb MSSQL

Database and will require the addition of several new views and tables as described below: The CHART

Oracle DB will have minor modifications as described obove.

2.4.2.3.1 CHART DB

The weather info will be stored in a single new field in the EVENT table, in JSON format to

represent the data for the selected weather station and sensor data. That change is described

above. Since this data is only being displayed in the CHART GUI and is not being used

otherwise, a more structured format (i.e., multiple fields and an additional table for sensor data)

was not required at this time and this mechanism allows for flexibility. If the fields change in the

future, only the internal format and the GUI would need to change. A version number will be

encoded within the JSON and the format will be documented (perhaps in the

TrafficEventManagement IDL comments) to avoid backward compatibility issues if the internal

format needs to change.

2.4.2.3.2 CHARTWeb DB

CHARTWeb DB G_RWIS Table:

This is an existing table currently in use by the map application. For the SCAN Weather

integration it is used to specify which weather stations will be available in CHART and to

provide the geo-lcoation of the Weather Station itself. No changes are needed to this table for

the SCAN Weather Integration feature.

[OBJECTID] [int] NOT NULL

CHART R7 Detailed Design 2-31 03/02/2011

[NAME] [varchar](255)

[SYS_NUMBER] [smallint] NOT NULL

[RPU_NUMBER] [smallint] NOT NULL

[HASCAMERA] [int]

[HASSCANCAST] [int]

[X] [float]

[Y] [float]

[HASAERIALPHOTO] [int] NOT NULL

[AERIALPHOTOX] [float]

[AERIALPHOTOY] [float]

[AERIALPHOTOWIDTH] [int]

[AERIALPHOTOHEIGHT] [int]

[UPDATETIME] [datetime]

[LATITUDE] [float]

[LONGITUDE] [float]

[SHAPE] [int]

[county_ID_1] [int]

[county_ID_2] [int]

CHARTWeb DB RWIS_Sensor_Route_lkp Table:

This table is new for R7 and is used to support the SCAN Weather Integration. The table is

populated with location information for each Weather Station’s surface sensors. This table

contains location information not available in SCAN including route prefix, route number, route

suffix and direction. This additional location information is used when determining the best

surface sensor to use when determining surface condition reported at the Weather Station level.

 [sys_number] [smallint] NOT NULL,

 [rpu_number] [smallint] NOT NULL

 [sensor_number] [smallint] NOT NULL,

 [route_prefix] [varchar](2)

 [route_num] [varchar](7)

 [route_suffix] [varchar](2)

 [route_direction] [varchar](20)

 [sensor_name] [varchar](35)

CHARTWeb DB RWIS_surface_conditions_lkp table:

This table is new for R7 to support the SCAN Weather Integration. It is used to map SCAN road

condition values to chart RoadCondition values (WeatherService.xsd).

 [chart_value] [varchar](35)

 [scan_value] [varchar](35)

CHART R7 Detailed Design 2-32 03/02/2011

CHARTWeb DB RWIS_AtmosphericReading View:

This view is new for R7 to support the SCAN Weather Integration. It is used to provide current

atmospheric data from the SCAN DB. It joins the G_RWIS table in the CHARTWeb DB with

the AtmosphericReading view in the SCAN DB. This view will be queried every N minutes

(configurable) to retrieve current atmospheric data. Join defined using the following FROM

clause: FROM G_RWIS a INNER JOIN [SOC-SCANDB-

SVR].[external].dbo.AtmosphericReading b ON b.sysid = a.Sys_Number AND b.rpuid =

a.Rpu_Number.

 a.Sys_Number AS sys_number [smallint] NOT NULL

 a.Rpu_Number AS rpu_number[smallint] NOT NULL

 a.name[varchar](255)

 b.AirTemperature AS air[smallint]

 b.DewPoint AS dew[smallint]

 b.RelativeHumidity AS rh[smallint]

 b.WindSpeed AS spd_avg [smallint]

 b.WindDirection AS dir_avg[varchar](25)

 b.WindGust AS spd_gst,[smallint]

 b.WindGustDirection AS dir_gst[varchar](25)

 b.Visibility AS vis [smallint]

 b.PrecipitationType AS precip [varchar](25)

 b.PrecipitationIntensity AS intens[varchar](25)

 b.PrecipAccum AS accum[smallint]

 b.ReadingDateTime AS datetime{date]

CHARTWeb DB SurfaceReading View:

This view is new for R7 to support the SCAN Weather Integration. It is used to provide current

surface data from the SCAN DB. It joins the G_RWIS table in the CHARTWeb DB with the

SurfaceReading view in the SCAN DB. This view will be queried every N minutes

(configurable) to retrieve current surface data. Join defined using the following FROM clause:

FROM G_RWIS a INNER JOIN [SOC-SCANDB-SVR].[external].dbo.SurfaceReading b

 ON b.sysid = a.Sys_Number AND b.rpuid = a.Rpu_Number

 a.Sys_Number AS sys_number [smallint] NOT NULL

 a.Rpu_Number AS rpu_number[smallint] NOT NULL

 b.SurfaceSensorid AS sensor_number[smallint] NOT NULL

 b.SensorName[varchar](255)

 b.ReadingDateTime AS datetime,[date]

 b.surfacecondition AS status[varchar](255)

 b.surfacetemperature AS sfcTemp[smallint]

CHART R7 Detailed Design 2-33 03/02/2011

2.4.2.4 Archiving - Changes

The CHART Archive database stores data from the CHART operational system as part of a

permanent archive. The CHART Archive database design is a copy of the CHART operational

system for those tables containing system, alert, traveler information messages and their

underlying data, and event log information. In addition, the CHART Archive database stores

detector data. In CHART R7 archive database changes need to be made on the EVENT table.

There are TSS_DEVICE and CAMERA Related changes in the DEVICE table.

GETOPERATIONALDATA needs modifications and testing as well.

CHART R7 Detailed Design 3-1 03/02/2011

3 Key Design Concepts

3.1 Integrated Map – Detector Bearing

Configuration

Changes have been made to the TSS details pages to allow an administrator to configure the map

display options for a TSS. These changes can be made regardless of the TSS mode (online,

offline, maintenance mode) and can be made to external detectors that have been imported into

CHART as well as native CHART detectors. The Map display options pages allow a user to

specify the direction that the arrows for a TSS should be oriented when displaying on the map.

Changes have also been made to allow the user to indicate if each zone group should be

displayed using an arrow that points toward the TSS bearing, using an arrow that points 180

degrees opposite the TSS bearing, or should not be displayed at all. If a TSS has multiple zone

groups that are configured to display in the same direction the CHART administrator may

configure their relative display order so that zone groups that represent outer lanes can be

displayed further away from the TSS lat/lon position and zone groups that represent inner lanes

can be displayed closer.

Map Display

When displaying a TSS on any of the GUI integrated maps, the system will always display an

icon on the map for any TSS that has a defined location. If a bearing has been defined and at

least one zone group is configured for map display and the TSS is online the system will render

the TSS on the map using an arrow for each configured zone group. The color of each arrow

will represent current speed for the zone group it represents. If any of those conditions are not

met, the TSS will be displayed using the same icon that is used in the GUI list pages for the TSS.

When a TSS is added to the system, either via import from an external system or via an

administrator action, it will be added with no defined bearing. This implies that the system will

display the TSS on maps using the list icon until an administrator manually sets the bearing. The

system will inspect the TSS route direction from its location settings and also inspect the

direction of each configured zone group and set the display type to primary if the direction

matches, opposite if the direction is opposite, and do not display on maps if the direction of the

zone group is neither the same nor opposite the direction of the TSS route. The system will not

attempt to default the display order if there are multiple zone groups in a single direction. Using

this algorithm it is anticipated that an administrator will usually need only set the TSS location,

zone group directions, then bearing in order to get the TSS to properly display on the map. If

external systems do not provide the route direction location information for a TSS the

administrator will have to set the TSS bearing, then set the display type (primary, opposite, none)

for each zone group in order to get the TSS to display properly using arrows.

Key Design Decisions

Because there are many TSS objects that will need to be rendered on maps, performance related

decisions were key in the design of this feature.

-In order to avoid overloading the mapping server the TSS objects are rendered client side.

CHART R7 Detailed Design 3-2 03/02/2011

-Because there will be over 400 TSS objects to render when viewing the entire state and

surrounding areas, and because browser recommendations are that no more than 50-100

markers should be rendered client side (both to avoid clutter and to avoid CPU overload

on the browser machine), the system will only allow the TSS layers to be visible at

configured map scales (zoom levels).

-Because the client browser has to request the data used to render the TSS objects using

AJAX requests that return data in JSON format (ASCII Text), which the browser must

parse into JavaScript objects, it is important to limit the size of the JSON documents

being returned to the browser each time the user needs their map display updated. To

that end, the system will only request JSON for objects within the visible display area of

the user’s current map. This implies that when the user pans the map to include a

previously unviewed area, or zooms the map out (so that more area becomes visible

around the previously viewed area) there will be a delay while the JSON data for the

objects in the newly visible are retrieved from the web server, parsed, and rendered.

3.2 NTCIP Camera Support

The NTCIP Camera feature builds upon the suport that already exists in CHART for Vicon and

Cohu cameras. A new prototocol handler will be created to handle the translation from

application level actions such as Pan and Zoom to NTCIP compliant commands to be delivered

to the camera controller. Changes will be made to allow some re-use of utility code that already

exists for NTCIP communications to DMS devices. One area where control of NTCIP cameras

differs from the currently supported camera models is that the NTCIP protocol requires a speed

parameter on every movement command. Rather than supporting variable speed movement via

GUI controls, the approach is to allow default speed values to be set for each camera for each of

4 movements: pan, tilt, zoom, and focus. Each camera will have 1 speed setting for Zoom and 1

speed setting for Focus. A single speed value for pan and tilt is not sufficient, however, because

when zoomed in you need the camera to move slower than when zoomed out. To accomplish

this feature there will be two speed settings for each camera for Pan (min and max), and two

settings for Tilt (min and max). When a pan or tilt operation is performed, CHART will

determine the speed to use based on the min and max speed settings and the current zoom level

of the camera. Two additional settings, min zoom value and max zoom value will also need to

be configured for each camera to allow for this zoom based variable speed behavior.

An NTCIP Camera Compliance Tester is also included as part of R7. The purpose of this

application is to allow camera vendors to verify that their NTCIP camera will work with the

CHART system. The design of this tester is based on the design of the NTCIP DMS Compliance

tester. It differs in the user commands it supports and the protocol handler it uses, however the

design of the basic framework of the tester, such as the base application and communications

features are similar.

3.3 SCAN Weather Integration

A new CHART Web Service will be created in order to provide internal CHART applications

with weather related data. This web service will currently retrieve Weather Station data from

the SCAN system and will provide it to internal CHART application in XML form. The XML

CHART R7 Detailed Design 3-3 03/02/2011

schema defining this interface was designed to be generic and not tied to any one provider of

Weather Information (I.E. not dependent on the SCAN system currently used).

The CHART GUI and Traffic Event Service will be modified to use this new Web Service to

allow pre-population of Traffic Event Road Conditions where applicable and provide display of

other weather details for a Traffic Event. This is discussed further in the Human Machine

Interface section.

For Release 7, the integration of the SCAN Weather system into CHART is primarily for

operator convenience however the design anticipates a future expanded role by defining an

extensible message set and isolating all SCAN-specific fields and parameters into one area of the

Weather web service.

 The design includes a modular approach to weather data sources. The addition of a new data

source requires only the addition of an interface to the new source in the web service. This

could be a new DB connection, a flat file, access to another web service or similar format.

The rest of the architecture remains unchanged.

 The design includes a modular approach to weather data clients. If the new client requires

access to summary weather information (air temperature, wind speed and direction, surface

temperature, surface conditions, or precipitation) then no changes to the weather web service

is required. More detailed weather information such as relative humidity, dew point, trends,

and historical reports will require changes to the messaging though no changes to the

architecure.

3.4 Shift Handoff Report

A new Shift Handoff Report is included as part of Release 7. The Shift Handoff Report is a

means of sharing important operations information with operators. The report is provided using

a third part product, WordPress, and as such does not contain any design elements within this

document. WordPress provides the ability to include dynamic information to operators in the

form of blog posts and static reference information in the form of web pages. A built-in menu

system allows operators to navigate through the site to view both types of information. Existing

Shift Handoff links in the CHART system are updated to point to this new Shift Handoff Report.

3.5 Error Processing

In general, CHART traps conditions at both the GUI and at the server. User errors that are

trapped by the GUI are reported immediately back to the user. The GUI will also report

communications problems with the server back to the user. The server may also trap user errors

and those messages will be written to a server log file and returned back to the GUI for display to

the user. Additionally, server errors due to network errors or internal server problems will be

written to log files and returned back to the GUI.

CHART R7 Detailed Design 3-4 03/02/2011

3.6 Packaging

3.6.1 CHART

This software design is broken into packages of related classes. The table below shows each

package that is new or changed to support the Release 7 features.

Package Name Package Description
CHART2.CameraControlModule This package is changed for R7 to support the NTCIP Camera model.

CHART2.DeviceUtility This package is changed for R7 to refactor some of the communication

related utilities allow their use with the NTCIP Camera Protocol

Handler.

CHART2.TrafficEventManagement This CORBA package will be modified to add a weather conditions

field to both IncidentData and WeatherServiceEventData.

CHART2.TrafficEventModule This Traffic Event Service package will be changed to support

querying the Weather Service.

CHART2.TSSManagementModule This TSS Service package has been modified to support the new

setMapDisplayOptions() API.

CHART2.TSSManagement

This CORBA package has been modified to accommodate the TSS

bearing, zone group display type, and zone group relatively display

order. A new API has also been added to allow an administrator to set

the map display options for a TSS without requiring them to set the

entire configuration.

CHART2.Utility This package will be changed to support a new utility for making time-

limited synchronous queries. This will be used to limit the amount of

time the opening of a traffic event will be delayed, if for some reason

the call to the Weather Service does not complete quickly.

chartlite.data This GUI package will be changed to add support for system profile

properties to allow the administrator to set the weather station search

radius and lookback time.

chartlite.data.trafficevents This GUI package will be changed to add an accessor method to the

WebIncident and WebWeatherServiceEvent to return the new IDL

field. (NOTE – the formatting of the weather data will be done in the

Javascript on the web page)

chartlite.data.tss This GUI package has been changed to make the WebTSS class

implement the MapFeature interface. This change will allow the

WebTSS objects to be displayed on the integrated map.

chartlite.data.video This is changed in R7 to support the NTCIP Camera model.

chartlite.servlet.tss This GUI package has been modified to add methods that display the

TSS Map Display Options page and process the changes from this

page when it is submitted by a user.

chartlite.servlet.map This GUI package has been modified to include processing that will

add TSS layers to the home page map and nearby devices map.

chartlite.servlet.usermgmt This GUI package will be changed to add support for system profile

properties to allow the administrator to set the weather station search

radius and lookback time.

chartlite.servlet.video.source This package is changed in R7 to support the NTCIP Camera model.

CHART.xsd.weatherservice This package is new for R7 and contains class generated from the

WeatherService.xsd file.

CHART.webservices.weathermodule This package is new for R7 and provides the implementation of the

web service module making up the CHART2 WeatherService web

service.

CHART R7 Detailed Design 3-5 03/02/2011

3.6.2 Mapping

The table below shows each package (Namespace in .Net) that is new or changed to support the

Release 6 Integrated Map - Detector Bearing feature.

Namespace Name Namespace Description
CHARTMap.Handlers Existing namespace and extended for the class “TSSInvetoryHandler”

that comprise the TSS Data Synchronization in Mapping R6.

3.7 Assumptions and Constraints

1. Assumption that zone groups only need to point to the TSS bearing or directly opposite

the TSS bearing. This assumption has been verified with Dale. The risk of needing

other bearings is mitigated by the fact that we export the zone group display bearing as a

bearing per zone group. This implies that the changes needed if we ever do need to

support other bearings per zone group would be limited to the CHART TSS Service and

GUI.

2. Assumption that we do not change the arrow direction for a zone group in an automated

way even if the underlying lane(s) change directions. Zone group bearings can only be

set toward or opposite the primary bearing of the TSS and must be modified by an

administrator using the TSS map display options form.

3. Assumption: The Mapping TSS editing functionalities in the CHART Device Editor

will be retired.

4. Assumption: Both the SCAN and CHART Web databases can support the periodic

querying of a modest amount of data. The access rate for each is expected to be every

few minutes for perhaps a few hundred records.

5. Constraint: The Intranet Map and SCAN web links on the Traffic Event Details page

may show an error page if the browser is unable to reach those web services; perhaps

because they are behind a firewall.

6. Assumption: The NTCIP Cameras deployed in the CHART system will support at least

one of the two documented ways of determining the current zoom level of the camera.

Without support for either of these methods, the system will not be able to provide

variable speed pan and tilt based on zoom level. For cameras that do not support

querying zoom level, the fallback position is to continue to control them with their

manufacturer proprietary protocol. The NTCIP Camera Compliance Tester will include

testing of the ability to query the zoom level, therefore this should not be an issue for

cameras purchased in the future if the variable speed pan/tilt works properly via the

tester.

Camera models tested successfully

Camera Model Firmware

COHU 3955 IVIEW VER 1.15

CHART R7 Detailed Design 3-6 03/02/2011

IVIEW VER 1.16

IVIEW VER 1.17

Rev B

COHU 3960 Rev B

Vicon SVFT NTCIP

Camera Controllers Tested

Controller Firmware Zoom mib support Position mib support

COHU iControl 9300

Series

iDome NTCIP 1.0a

04/21/04

 X

COHU iControl 9300

Series

1.5.7 Nov 23 2005 X X

CHART R7 Detailed Design 7 03/02/2011

4 Use Cases – Integrated Map – Detector Bearing

There are both CHART and Mapping use case diagrams for the Integrated Map - Detector

Bearing feature.

4.1 CHART

The use case diagrams depict new functionality for the CHART GUI Integrated Map and also

identify existing features that will be enhanced. The use case diagrams for the Integrated Map

exist in the Tau design tool in the Release7 area. The sections below indicate the title of the use

case diagrams that apply to the Integrated Map.

4.1.1 R7HighLevel (Use Case Diagram)

This diagram shows the high level use cases for features added or modified as part of R7.

CHART R7 Detailed Design 8 03/02/2011

Configure

Video Sources

Manage Camera

Operator

System

MODIFIED FOR R7

NEW FOR R7

Configure TSS

View TSS on Map

Export TSS Data

Administrator

Configure Weather Settings

Provide Weather

Data to Internal Applications

NEW FOR R7

Retrieve Weather Data

From SCAN

Manage Traffic Events

«include»

Figure 4-1. R7HighLevel (Use Case Diagram)

4.1.1.1 Configure TSS (Use Case)

New in R7, a user can edit the map display options for a TSS. A user can specify a bearing

for the TSS that is used to orient the TSS zone groups when they are displayed on the maps.

A user can specify whether a zone group should be displayed on maps. If a user specifies

that a zone group should be displayed on the maps, the zone group can be configured to

display either in the direction of the TSS bearing or in the opposite direction (180 degrees

CHART R7 Detailed Design 9 03/02/2011

opposed) of the TSS bearing. A user can specify the order in which zone groups should

appear on the maps. Zone groups with lower display order values will appear on the map

closer to the TSS lat/lon position.

4.1.1.2 Configure Video Sources (Use Case)

The system allows an administrator with the “Configure Camera” right to configure video

sources. Video Sources include generic unspecified video sources, "No Video Available"

sources, fixed cameras, and controllable cameras including COHU, Vicon, and NTCIP

cameras. Each video source can be configured to use multiple video sending devices.

4.1.1.3 Configure Weather Settings (Use Case)

The administrator will be able to configure the maximum distance from a roadway traffic

event that a weather station can be to be included in the pre-selection of the road surface

condition for a traffic event. (This is also referred to as a "cutoff radius"). The

administrator will be able to configure the maximum age that a weather station data can

have and still be included in the pre-selection of the road surface condition for a traffic

event.

4.1.1.4 Export TSS Data (Use Case)

The system shall provide detector data to external systems. The system shall enforce

granular, organization based user rights to allow the level of detail provided for a detector

to be controlled. Two user rights (View Detailed VSO and View Summary VSO) will be

used to determine if a detector's detailed volume, speed, and occupancy (VSO) data is

exported, only a speed range, or no VSO data. When VSO data is provided for a detector, it

will include the data for zone groups and for each zone within the group. New for R7,

CHART will export map display options for each detector including: bearing, zone group

display direction, and zone group display order. The detector data will be provided using

the TMDD standard, with CHART extensions as needed. External systems can obtain an

inventory and status of all CHART system detectors, or the ones that have changed in a

certain lookback time period. They can obtain updates to the detector data (including the

status) periodically with on-demand request or by subscribing to receive updates at a

specified web service URL.

4.1.1.5 Manage Camera (Use Case)

An operator with the correct functional rights may perform basic operations on a camera.

Please refer to the Manage Camera Use Case diagram for more detailed information.

4.1.1.6 Manage Traffic Events (Use Case)

This diagram models the actions that an operator may take that relate to traffic events. This

includes responding to traffic events using field devices. New in R7, the system will pre-

select the road surface condition based on data from the nearest weather station with recent

data when the traffic event is opened. The operator can view the weather station that was

used to make the automatic selection. The weather station data will be logged to the event

CHART R7 Detailed Design 10 03/02/2011

history log when the event is opened and again when it is closed. Just as in previous

releases, the user may manually select the road surface condition while the event is open.

4.1.1.7 Provide Weather Data to Internal Applications (Use Case)

The system will provide an interface to be used by internal applications to obtain weather

related data based on location.

4.1.1.8 Retrieve Weather Data From SCAN (Use Case)

The system will retreive weather related data from SCAN for the purpose of making it

available to internal applications.

4.1.1.9 View TSS on Map (Use Case)

The home page map shall include map layers to allow the user to view TSSs. TSS layers are

shown on separate overlay layers with a separate layer for CHART TSSs and separate

layers for TSSs from each external agency. The TSS layers should be below all other device

layers and above the Exits/Mileposts layer. Any TSS that has a defined point location can

be viewed on the home page map by clicking a link on the details page for the device.

CHART R7 Detailed Design 11 03/02/2011

4.1.2 MapAndGISUses (Use Case Diagram)

This diagram shows the mapping and GIS related use cases supported by the system.

Updated for R7

Select Region

Select Intersecting

Feature

Edit Traffic Event

Properties

Specify Object

Location

Select State

Select Primary Route

Select Intersecting Milepost

Use Devices

and Traffic Events

from Map

Specify Alias Location

System

Edit Alias

Perform GIS

Query

Get Counties

By State

Get Aliases

Get Intersecting

Routes

View Close

Devices on Map

View Traffic

Event Details

View Center's

Events On

Map

View Open

Events On

Map

Navigate Map

Manage Aliases

View Devices

On Map

Select Alias

Location

Add Close Devices

to Response

from Map

Create Traffic Event

Select Target

Location on

Map

Select County

Select Intersecting Route

Specify

Traffic Event

Location

Add Alias

Remove Alias

Get States

Get Regions

By State

Get Routes

These use cases currently

exist in the Roadway Location

Lookup Service.

View Devices

Close to Traffic

Event

Operator

View Home

Page

Select Map

Layers

View Alias List

View Home

Page Map

Select Intersecting Exit

Specify Device Location

«include»

«extend»

«extend»

«extend»

«include»

«include»

«include»

«extend»

«extend»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«extend»

«include»

«include»

«extend»

«extend»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«extend»

«extend»

«include»

«include»

«include»

«extend»

Figure 4-2. MapAndGISUses (Use Case Diagram)

4.1.2.1 Add Alias (Use Case)

A suitably privileged user may add a new location alias to the system. A user may specify

the internal name, public name, and location of the alias.

CHART R7 Detailed Design 12 03/02/2011

4.1.2.2 Add Close Devices to Response from Map (Use Case)

A user may select one or more devices on the close device map for a traffic event and add

them to the response plan of the target traffic event. The close devices map will update the

markers of the added devices to indicate that they are in the response plan.

4.1.2.3 Create Traffic Event (Use Case)

The user with the correct functional rights may add a new traffic event. When creating a

traffic event, the system will show the user a list of existing traffic events that may be

duplicates of the new event being created based on the user's selections for the new event's

location. External and pending events do not appear as possible duplicate events.

4.1.2.4 Edit Alias (Use Case)

A suitably privileged user may edit the information for an existing location alias. A user

may specify the internal name, public name, and location of the alias.

4.1.2.5 Edit Traffic Event Properties (Use Case)

A user with sufficient privileges may alter the properties of a traffic event from the traffic

event details page.

4.1.2.6 Get Aliases (Use Case)

A client application may query the list of location aliases.

4.1.2.7 Get Counties By State (Use Case)

A client application may query the complete list of counties in a specified state. The

returned county data may optionally include extents and boundary information.

4.1.2.8 Get Intersecting Routes (Use Case)

A client application may query the set of routes that intersect a specified route in a

particular state and county. The system will only return multiple points where the two

routes intersect if those points are greater than a configurable distance from one another.

4.1.2.9 Get Regions By State (Use Case)

A client application may query the set of regions defined for a particular state.

4.1.2.10 Get Routes (Use Case)

A client application may query the list of routes defined within a particular state and

county.

CHART R7 Detailed Design 13 03/02/2011

4.1.2.11 Get States (Use Case)

A client application may query the complete list of states. Each returned state may include

optional extents data.

4.1.2.12 Manage Aliases (Use Case)

A user with sufficient privileges may use the system to manage location aliases. Refer to

extending use cases for details.

4.1.2.13 Navigate Map (Use Case)

The user shall be able to pan and zoom a map display. This may include various associated

features, such as pan using arrows or mouse drag, zoom using clicking, direct zoom to a

specific level, draw new bounding box, etc. The pan/zoom capability provided will be

dependent on the underlying map viewer chosen ... with the basic requirement being some

method of pan/zoom. Other map navigation features include a Refresh Now button that

immediately requests fresh data for the map view and a Close All Popups button that will

close all open object callouts (popup overlays).

4.1.2.14 Perform GIS Query (Use Case)

A client application may utilize REST web services to query GIS information from the

system.

4.1.2.15 Remove Alias (Use Case)

A suitably privileged user may remove a location alias from the system. Removing the

location alias will not impact the location of devices and traffic events that were located

using the alias in the past. Each devices or traffic event gets a copy of the alias location

information when it is created.

4.1.2.16 Select Alias Location (Use Case)

A user may select from a previously defined set of alias locations in order to specify the

location of an object. Doing so will populate the location with all data that was specified

when the alias was created. In this case the location description will also include the public

name of the alias in parentheses.

4.1.2.17 Select County (Use Case)

When specifying an object's location, a user may select a county from a list of known

counties. They system will also allow the user to select a county from a list of recently

used counties, or enter a free text county if the state is not Maryland. If the specified

county has known extents, the map will zoom to the extent of the selected county.

CHART R7 Detailed Design 14 03/02/2011

4.1.2.18 Select Intersecting Feature (Use Case)

A user may select an intersecting feature along a primary route when defining the location

of an object. The user may specify that the location is at, past, prior to, east of, west of,

north of, or south of the selected feature.

4.1.2.19 Select Intersecting Exit (Use Case)

A user may select an intersecting exit along a primary route when setting the location of an

object. If the specified exit is from the list of known exits, it will also populate the exit

suffix (if applicable) and the name of the road the exit leads to (if that data is available).

4.1.2.20 Select Intersecting Milepost (Use Case)

A user may specify a milepost location using state or county milepost numbers along a

route within a state and county. The system will attempt to find a defined milepost that

exactly matches the specified milepost. If it cannot, it will attempt to find the two closest

surrounding mileposts on the same route within a configurable distance and calculate an

approximate milepost location from them (Note that this is done using straight-line

interpolation. If the roadway curves significantly, the calculated point may be off the

roadway. It is expected that the user would fine-tune the location using the map if the

calculated point is not satisfactorily close to the roadway). If a point can be determined the

map will move to this point and a marker will be placed on the map to show the user where

the location is.

4.1.2.21 Select Intersecting Route (Use Case)

The user may select an intersecting route for the object location from a list of known routes

that intersect the specified primary route, or may specify a free text route name if the route

needed is not in the list of known intersecting routes. The system will display intersecting

routes that are determined to be ramps in a separate list. If the selected intersecting route

has a point location, the map will move to this location and place a marker to show the user

the exact location.

4.1.2.22 Select Map Layers (Use Case)

The user shall be able to choose the map layers to be displayed on a map from a list of

available layers that pertain to the map being viewed. Each device type is shown on a

separate device type specific overlay layer. TSS device layers are shown on separate

overlay layers with a separate layer for CHART TSSs and separate layers for TSSs from

each external agency. Traffic events are shown on separate overlay layers that are specific

to the traffic event type. All maps can be displayed over a pre-determined ESRI base map.

The CHART Intranet base map is such a map and will be an option for the base map layer

(note: the Intranet base map will be the only base map available in R5). When using the

CHART base map, users may also view maps and exits as separate overlay map layers that

are only visible when zoomed in on a detailed area but can be made invisible if desired.

CHART R7 Detailed Design 15 03/02/2011

4.1.2.23 Select Primary Route (Use Case)

The user may select a primary route for the object location from a list of known routes or

may specify a free text route name if no known routes are available. The route is selected

by first selecting a route type, then specifying the desired route of the specified type. If the

user has selected a known route, they may specify whether the route number or route name

is used. The user may also select a route direction from a pre-determined list of directions.

4.1.2.24 Select Region (Use Case)

The user may specify a region that the object is located in. If the state is MD the system

will provide the user with a defined list of regions to choose from. If the state is not MD

the user may enter free form text in the region field. Selecting a region will automatically

cause the system to not have a county selected.

4.1.2.25 Select State (Use Case)

When specifying an object's location the user may select a state from a list of known states.

Maryland will be selected by default. When this is done, the object location map will move

to the extent of the specified state if it is known.

4.1.2.26 Select Target Location on Map (Use Case)

A user may click on a map in a specified way to indicate that the point they are clicking on

is the desired location. When this is done during object location editing, the system will

attempt to populate the state and county of the clicked location and populate those fields for

the user. If the user has previously entered data about a location such as county, primary

route, and intersecting feature and the new location that has been clicked is within a

configurable distance of the previous location the form entries will not be lost. If, however,

the new location is too far away from the previous location the user will be prompted and

allowed to specify if the old location selections apply to the new point.

4.1.2.27 Specify Traffic Event Location (Use Case)

When adding a new traffic event or editing the details of an existing traffic event, a user

may specify the location of the traffic event. Refer to the SpecifyObjectLocation use case

for details.

4.1.2.28 Specify Alias Location (Use Case)

When adding a new location alias or editing the details of an existing location alias, a user

may specify the location of the alias. Refer to the SpecifyObjectLocation use case for

details.

4.1.2.29 Specify Device Location (Use Case)

A user with sufficient privileges may specify the location of the equipment. See Specify

Object Location use case for details.

CHART R7 Detailed Design 16 03/02/2011

4.1.2.30 Specify Object Location (Use Case)

A user may specify the location of an object with the aid of a system map. This process can

involve selecting a state, county or region, primary route, and intersecting feature. The

system will suggest a location description based on the selections the user makes. The user

may override the suggested location description if desired, but will be warned when doing

so and again before submitting the location form. During the process of setting an object

location, a user may press a button to reset the form. Doing this will cause all previously

entered location data to be lost and the location marker(s) will be cleared from the map.

4.1.2.31 Use Devices and Traffic Events from Map (Use Case)

A user may click on an object marker on the map to use the device or traffic event that the

marker represents. Doing so will open a callout (popup overlay on map) that contains

information about the clicked object and HTML links that allow the user to use the device

or traffic event. Clicking at a point that has multiple object markers overlapping will result

in an intermediate popup that allows the user to select which of the hit markers they would

like to use. Refer to the MapDeviceAndTrafficEventUses use case diagram for details.

4.1.2.32 View Alias List (Use Case)

A suitably privileged user may view the list of location aliases in the system. The detailed

data for each location alias in the list shall include the Internal Name, Public Name,

Location Description, County, Route, and Direction. A user may sort the list of aliases by

Internal Name, Public Name, Location Description, County, and Route. A user may filter

the list of aliases by County, Route, and Direction. A user may choose the columns to

display in the alias list.

4.1.2.33 View Center's Events On Map (Use Case)

The system shall allow the user to view a layer on the home page map that shows the traffic

events for which the user's center is responsible. This layer shall be visible by default.

When the home page map is showing only events for the user's operations center, it will

also show text indicating that the data is filtered. Activating this filter will move the map to

an extent that includes all events controlled by the user's center and will make the event

layers visible if they were not already.

4.1.2.34 View Close Devices on Map (Use Case)

The R3B3 feature that shows devices close to a traffic event on the event details page will

be extended to show those devices on a map. The map will be initially panned / zoomed

such that all close devices in a selected radius are shown. The user may change the defined

radius to any of a pre-defined set of values. Doing so will pan/zoom the map to the extent

of the devices within the new range.

4.1.2.35 View Devices Close to Traffic Event (Use Case)

The close devices map shall include map layers to allow the user to view devices that have

CHART R7 Detailed Design 17 03/02/2011

a defined point location and are within a defined radius of the event. Each device type shall

be presented on a different map layer. The device types available for display on the map are

DMS, HAR, SHAZAM, TSS, and Camera.

4.1.2.36 View Devices On Map (Use Case)

The home page map shall include map layers to allow the user to view devices. Each device

type shall be presented on a different map layer. The device types available for display on

the map in release 7 are DMS, HAR, SHAZAM, TSS, and Camera. Any device of these

types that has a defined point location can be viewed on the home page map by clicking a

link on the details page for the device.

4.1.2.37 View Home Page (Use Case)

This use case shows the home page being shown to the user. A user is shown the home

page when logging in, and can view the home page at any other time during the login

session. The home page always shows the user a visual indication of the number of open

alerts in the new state and allows the user to quickly view summary information about the

new alerts (including alert type, creation time, and description) without leaving their current

view.

4.1.2.38 View Home Page Map (Use Case)

A user may view a map on the Home Page. The home page map will show all open events

for the user's operating center by default.

4.1.2.39 View Open Events On Map (Use Case)

A user may choose to show all open events on the home page map. When this action is

performed, the traffic event layers are made visible if they were previously hidden, and the

map is zoomed to the extent of all open traffic events. Any open traffic event that has a

defined point location can be viewed on the home page map by clicking a link on the details

page for the traffic event.

4.1.2.40 View Traffic Event Details (Use Case)

A user with appropriate rights shall be permitted to view the details for an event. This

feature is being enhanced in release 5 to include a map view that shows nearby devices on

the traffic event details page.

CHART R7 Detailed Design 18 03/02/2011

4.1.3 MapDeviceAndTrafficEventUses (Use Case Diagram)

This diagram shows the ways that users may interact with devices and traffic events from

the map.

New for R7

Use TSS from Map

View TSS Details Page

Override Control

of Camera

All use cases shown can be

accessed directly by the operator

via the text-based R4 interface.

View HAR Details

Page

Edit HAR Response

Message

View SHAZAM

Details Page

Use HAR from Map

Use SHAZAM

from Map

Operator

Use DMS from Map

Request Control

of Camera

Display Camera on

Home Monitor

Display Camera on

Local Monitor

Use Traffic Event

from Map

View Traffic Event

Details Page

Edit Traffic Event

Roadway Conditions

View DMS Details

Page

Edit DMS Response

Message

Use Camera

from MapRelease Control

of Camera

View Camera

Details Page

«extend»

«extend»

«extend»

«extend»

«extend»

«include»

«extend»

«extend»

«include»

«extend»

«extend»

«extend»

«extend»

«extend»

«extend»

«extend»

Figure 4-3. MapDeviceAndTrafficEventUses (Use Case Diagram)

4.1.3.1 Display Camera on Home Monitor (Use Case)

A user may click on a link in the camera map popup to display the camera on the user's

home monitor, if a home monitor has been assigned.

4.1.3.2 Display Camera on Local Monitor (Use Case)

A user may click on a link in the camera map popup to display the camera on a monitor in

the user's local monitor group (if a group has been assigned) and bring up the list of local

monitors in the working window.

4.1.3.3 Edit DMS Response Message (Use Case)

A suitably privileged user may edit and execute a DMS response message from the DMS

map popup. The user may invoke either the DMS Response Message (Auto) Editor or the

DMS Response Message (Manual) Editor from the DMS map popup. The edited DMS

CHART R7 Detailed Design 19 03/02/2011

response message will be executed when the editor form is submitted.

4.1.3.4 Edit HAR Response Message (Use Case)

A suitably privileged user may edit and execute a HAR response message from the HAR

map popup. The user may invoke the HAR Response Message Editor from the HAR map

popup, and the edited HAR response message will be executed when the editor form is

submitted.

4.1.3.5 Edit Traffic Event Roadway Conditions (Use Case)

A user may click on a link to invoke the roadway conditions editor from the traffic event

map popup.

4.1.3.6 Override Control of Camera (Use Case)

A suitably privileged user may override control of a controllable camera (that is currently

being controlled by another user) from the camera map popup.

4.1.3.7 Release Control of Camera (Use Case)

A suitably privileged user may release control of a camera that is currently being controlled,

from the camera map popup.

4.1.3.8 Request Control of Camera (Use Case)

A suitably privileged user may request control of a controllable camera from the camera

map popup.

4.1.3.9 Use Camera from Map (Use Case)

A Camera will have a different icon on the Map depending on its operational status (e.g.

online or offline). When a user causes the mouse cursor to hover over a Camera icon in the

map, the name or location of the camera (as specified in the system profile) will appear. A

user may click on a camera icon in the map to display summary information in a popup.

The Camera map popup will display the name or location of the Camera (as configured in

the system profile) and the name and operations center of the user controlling a camera, if

the camera has a control session open.

4.1.3.10 Use DMS from Map (Use Case)

A DMS will have a different icon on the Map depending on its mode (e.g. online, offline, or

maintenance) and whether it is currently displaying a message. When a user causes the

mouse cursor to hover over a DMS icon in the map, the name of the DMS and a plain text

representation of the DMS message will appear. A user may click on a DMS in the map to

display summary information in a popup. The DMS map popup will display the name and

location of the DMS, a representation of the DMS's current message, a list of open traffic

events that currently have the DMS in their response plans, and an indicator of whether a

CHART R7 Detailed Design 20 03/02/2011

traffic event owns a message that is active on the DMS's message queue.

4.1.3.11 Use HAR from Map (Use Case)

A HAR will have a different icon on the Map depending on its mode (e.g. online, offline, or

maintenance) and whether it is currently playing a non-default message. When a user

causes the mouse cursor to hover over a HAR icon in the map, the name of the HAR will

appear. A user may click on a HAR icon in the map to display summary information in a

popup. The HAR map popup will display the name of the HAR, a representation of the

HAR's current message, a list of open traffic events that currently have the HAR in their

response plans, and an indicator as to whether a traffic event owns a message that is active

on the HAR's message queue.

4.1.3.12 Use SHAZAM from Map (Use Case)

A SHAZAM will have a different icon on the Map depending on its mode (e.g. online,

offline, or maintenance) and whether it has its beacons on. When a user causes the mouse

cursor to hover over a SHAZAM icon in the map, the name of the SHAZAM and the

current beacon state will appear. A user may click on a SHAZAM icon in the map to

display the name of the SHAZAM in a popup.

4.1.3.13 Use Traffic Event from Map (Use Case)

A traffic event will have a different icon on the Map depending on the type of incident. A

user may click on a traffic event icon in the map to display summary information in a

popup. When a user causes the mouse cursor to hover over a traffic event icon in the map,

the name of the traffic event and a description of the lane closures (if the traffic event has a

defined roadway configuration) will appear. The traffic event map popup will display the

name of the traffic event and a graphical representation of the lane closures (if the traffic

event has a defined roadway configuration).

4.1.3.14 Use TSS from Map (Use Case)

A TSS will have a different icon on the Map depending on its mode (e.g. online, offline, or

maintenance). If a TSS is online (and is not comm. marginal, comm. failure, or hardware

failure) and has at least one zone group that is displayable on maps, an arrow will appear on

the map for each zone group that is displayable on maps. The arrow for each zone group

shall be red if the speed for that zone group is 0-30 mph, orange if the speed for that zone

group is > 30 and <= 50 mph, green if speed is > 50 mph. The arrow for a zone group shall

be gray if the speed data for the detector is more than 10 minutes old. The zone group

arrows will be positioned on the map based on the configured zone group display order per

direction. Starting at the location of the TSS, zone groups with a lower display order will

appear first and zone groups with higher display orders will appear further away from the

TSS lat/lon position. When a user causes the mouse cursor to hover over a TSS icon on the

map, the name of the TSS and its direction will appear. A user may click on a TSS icon on

the map to display the name of the TSS and zone group information in a popup. If the user

has the View Detailed VSO right, the zone group information will include the name, speed,

CHART R7 Detailed Design 21 03/02/2011

volume, and occupancy for each zone group that is displayable on maps. If the user has the

View Summary VSO right, the popup will include speed summary information for each

zone group that is displayable on maps. If a user does not have either the View Detailed

VSO right or the View Summary VSO right, the zone group speed data will be restricted.

4.1.3.15 View Camera Details Page (Use Case)

A user may click on a link in the Camera map popup to invoke the Camera details page in

the working window.

4.1.3.16 View DMS Details Page (Use Case)

A user may click on a link in the DMS map popup to invoke the DMS details page in the

working window.

4.1.3.17 View HAR Details Page (Use Case)

A user may click on a link in the HAR map popup to invoke the HAR details page in the

working window.

4.1.3.18 View SHAZAM Details Page (Use Case)

A user may click on a link in the SHAZAM map popup to invoke the SHAZAM details

page in the working window.

4.1.3.19 View Traffic Event Details Page (Use Case)

A user may click on a) a link in the traffic event map popup, b) a traffic event listed in the

DMS map popup, or c) a traffic event listed in the HAR map popup to invoke the traffic

event details page in the working window.

4.1.3.20 View TSS Details Page (Use Case)

A user may click on a link in the TSS popup on the map to invoke the TSS details page in

the working window.

CHART R7 Detailed Design 22 03/02/2011

4.1.4 ConfigureTSS (Use Case Diagram)

This Use Case Diagram identifies the new actions for R7 which can be performed to

configure the "Map Display Options" for a TSS. This is an expansion of the action

"Configure TSS" in the "R7 High Level" Use Case Diagram.

Edit Map Display Options Set Zone Group Display Direction

Set Zone Group Display Order

New for R7

New for R7

Operator

Set Bearing

«extend»

«extend»

«extend»

Figure 4-4. ConfigureTSS (Use Case Diagram)

4.1.4.1 Edit Map Display Options (Use Case)

New for R7, a user with the configure TSS functional right can edit the map display

properties for any TSS that has a defined location (lat/lon). The map display options can be

edited with the TSS in any mode (online, offline or maintenance mode). The map display

properties include: TSS bearing, zone group display direction, and zone group display

order.

4.1.4.2 Set Bearing (Use Case)

New for R7, a user can specify the bearing for any TSS that has a defined location (lat/lon).

A bearing of 0 degrees shall mean the bearing is due East. The bearing shall grow counter-

clockwise such that a bearing of 90 indicates due North, 180 indicates due West, and 270

indicates due South. A TSS will not have a defined bearing when it is initially created. The

TSS bearing is used to orient the zone groups for the TSS on the maps.

4.1.4.3 Set Zone Group Display Direction (Use Case)

New for R7, a user can specify the display direction for each zone group. The display

direction will indicate how the zone group should be displayed on maps. A user can specify

that a zone group should either be displayed on maps or not be displayed on maps. For zone

groups that are displayed on maps, a user can specify whether they are displayed using an

arrow that points in the direction of the TSS bearing or using an arrow that points in the

opposite direction (180 degrees opposed) of the TSS bearing. When a user changes a zone

group from not displayable on maps to displayable on maps, the system shall display a

CHART R7 Detailed Design 23 03/02/2011

warning that the zone group name may be displayed on the Internet map. A zone group will

be set to not displayable on maps when it is initially created.

4.1.4.4 Set Zone Group Display Order (Use Case)

New for R7, a user can specify the display order for each zone group relative to other zone

groups of the TSS with the same display bearing. Starting at the location of the TSS, zone groups

with a lower display order will appear first on the map and zone groups with higher display

orders will appear further away from the TSS lat/lon position.

4.2 Mapping

The use case diagrams depict new functionality for the CHART Intranet and Internet Mapping

Application and also identify existing features that will be accessible via the CHART Intranet

Mapping Application. The sections below indicate the title of the use case diagrams that apply

to the CHART Intranet and Internet Mapping Application.

4.2.1 Data Exporter Synchronization

Figure 4-5. Data Exporter Synchronization (Use Case Diagram)

4.2.1.1 Synchronize Add Events & Devices (Use Case)

The Synchronization Application shall listen to the CHART Data Exporter Client’s request

when an add event occurred. In Mapping R5, the Synchronization Application shall

CHART R7 Detailed Design 24 03/02/2011

synchronize add events when a new CHART Event, or Device (DMS, HAR, SHAZAM,

CAMERA, and DETECTOR) is added in CHART. The Synchronization Application shall

also synchronize any new CHART Events, or Devices (DMS, HAR, SHAZAM,

CAMERA, DETECTOR) when a full inventory update occurs in CHART Data Exporter

Client.

4.2.1.2 Synchronize Update Events & Devices (Use Case)

The Synchronization Application shall listen to the CHART Data Exporter Client’s request

when an update event occurred. In Mapping R5, the Synchronization Application shall

synchronize update events when an existing CHART Event or Device (DMS, HAR,

SHAZAM, CAMERA, and DETECTOR) is updated in CHART. The Synchronization

Application shall also synchronize any updates of CHART Events, or Devices (DMS,

HAR, SHAZAM, CAMERA, DETECTOR) when a full inventory update occurs in

CHART Data Exporter Client.

4.2.1.3 Synchronize Remove Devices (Use Case)

The Synchronization Application shall listen to the CHART Data Exporter Client’s request

when a remove event occurred. In R5, the Synchronization Application shall synchronize

remove events when an existing CHART Device (DMS, HAR, SHAZAM, CAMERA, and

DETECTOR) is removed in CHART. The Synchronization Application shall also

synchronize any removal of CHART Devices (DMS, HAR, SHAZAM, CAMERA,

DETECOR) when a full inventory update occurs in CHART Data Exporter Client. The

removal of CHART Events is handled by a nightly schedule job.

CHART R7 Detailed Design 25 03/02/2011

4.2.2 DisplayTSS (Use Case Diagram)

Operator View Zone Group
Display on TSS

View TSSs on
Intranet &

Internet map

Figure 4-6 DisplayTSS (Use Case Diagram)

4.2.2.1 Operator (Actor)

4.2.2.2 View TSSs on Intranet & Internet map (Use Case)

This use case is about viewing the TSSs after they been added or updated and it has a

bearing in CHART. The Map will display the Detector arrow rotated according to the

bearing generated by the CHART system.

4.2.2.3 View Zone Group Display on TSS (Use Case)

The map will display a detector zone group only if the 'Display On Maps' indicator from

the CHART system indicates to do so. If a TSS is changed to have no displayable zone

groups (in CHART), it will not be displayed on the map. If a TSS has one or more

displayable zone groups marked as map displayable (in CHART) the TSS will be displayed

on the map.

CHART R7 Detailed Design 26 03/02/2011

5 Detailed Design – Integrated Map – Detector Bearing

5.1 Human-Machine Interface

TSS Configuration

This section describes forms used to configure a TSS for display on the maps. The maps and

forms have been changed to allow a user to specify display properties for a TSS in order to

display the TSS and its zone groups. The TSS display properties include: bearing, zone group

display direction, and zone group display order. A page for setting these properties can be

accessed from the TSS details page. The TSS and its zone groups, if applicable, will be displayed

on the Home Page and Close Devices maps in the CHART GUI and will be exported for display

on the Intranet and Internet maps.

TSS Map Display Options

The Map Display Options for a TSS can be edited by using the Edit Map Display Options page.

This page can be accessed via a link on the TSS Details page in the Zone Groups configuration

section (see Error! Reference source not found.Error! Reference source not found. below).

This link will be available only if the TSS has a location with a defined latitude/longitude.

Figure 5-1 The Edit Map Display Options Link in the Zone Groups Configuration Section

The Edit Map Display Options page contains a form for updating the zone group display

direction and display order, as well as a map that can be used to set the bearing for the TSS (see

below).

CHART R7 Detailed Design 27 03/02/2011

Figure 5-2. The TSS Map Display Options Page.

TSS Bearing

The TSS bearing determines the orientation of zone groups on the maps. The TSS bearing has

values of 0 to 359 degrees. A bearing of 0 degrees means the bearing is due East. The bearing

grows counter-clockwise such that a bearing of 90 degrees indicates due North, 180 degrees

indicates due West and 270 degrees indicates due South. A bearing of 359 degrees is 1 degree

South of due East. When a TSS is initially created, the bearing is undefined.

The bearing can be set for any TSS that has a location with a defined latitude and longitude. The

bearing can be edited either by using the slider (located below the map) or by clicking and

dragging on the map in the direction of the desired bearing (see Error! Reference source not

found.Error! Reference source not found. below). As the slider pointer is moved from left to

right, the bearing value increases in the range from 0 to 359 degrees (and the orientation of the

bearing pointer on the map is updated accordingly). Clicking and dragging on the map will move

the bearing pointer in the direction of the mouse pointer (and update the slider value

accordingly).

Edit zone group display direction and display order

Edit TSS bearing

CHART R7 Detailed Design 28 03/02/2011

Figure 5-3. Setting the TSS

Bearing Using the Slider or the

Map.

CHART R7 Detailed Design 5-1 03/02/2011

Zone Group Display Direction

The Display Direction of a zone group determines if and how a zone group will be displayed on

the maps. The values for Display Direction include: Toward Bearing, Away from Bearing, and

Do Not Display. A zone group with a Display Direction of Toward Bearing will be displayed on

the maps using the same bearing as the TSS. A zone group with a Display Direction of Away

from Bearing will be displayed on the maps using a bearing that is 180
o
 opposite the bearing of

the TSS (i.e. if the TSS has a bearing of 90
o
, the zone group will be displayed using a bearing of

270
o
). A zone group with a Display Direction of Do Not Display will not appear on the maps.

When a zone group is added to a TSS, the display direction is given a default value based on the

direction of the TSS and the direction of the zone group. If the direction of the TSS has a value

of “None”
1
, the display direction of the TSS will be set to “Toward Bearing” regardless of the

direction of the zone group. If the direction of the TSS has a value other than None, the zone

group display direction will be set to: “Toward Bearing” if the zone group direction matches the

TSS direction (e.g. North and North), “Away from Bearing” if the zone group direction is

opposite to the TSS direction (e.g. North and South), or “Toward Bearing” if the zone group

direction and TSS direction cannot be compared (e.g. North and Inner Loop).

The zone groups are organized on the forms based on the value of the Display Direction (see

Figure 5-4 below). Any Primary Direction zone groups are listed first, next any Opposite

Direction zone groups are listed, and lastly any Other zone groups are listed. When the Display

Direction of a zone group is updated, the zone group is moved to the appropriate group on the

forms.

Figure 5-4. Zone Groups Organized by Display Direction.

1
 Direction values for a TSS include: None, North, East, South, West, Inner Loop, Outer Loop, South/North,

East/West, and Inner Loop/Outer Loop.

Display toward bearing

Display away from bearing

Do not display on maps

CHART R7 Detailed Design 5-2 03/02/2011

When a zone group that is not displayable on maps (i.e. the Display Direction is Do Not Display)

is updated to be displayable on maps (i.e. the Display Direction is either Toward Bearing or

Away from Bearing), the user will be warned that the zone group name may now be displayed on

the Intranet and/or Internet maps (see Figure 5-6 below).

Figure 5-5. Warning That a Zone Group is Being Changed to Displayable on Maps.

Zone Group Display Order

The Display Order of a zone group determines where a zone group will be displayed on the maps

in relation to the TSS latitude/longitude. Zone group arrows will be displayed on the maps based

on the configured zone group display order per direction. Starting at the location of the TSS,

zone groups with lower display orders will appear first and zone groups with higher display

orders will appear further away.

The Display Order of a zone group can be edited by clicking on either the “In” or “Out” link in

the “Move” column of the table (see Figure 5-6 below). Clicking on the “In” link will cause the

zone group to be positioned closer to the TSS, and clicking on the “Out” link will cause the zone

group to be positioned further away from the TSS.

CHART R7 Detailed Design 5-3 03/02/2011

Figure 5-6. Updating the Zone Group Display Order by Using the Move In and Move Out

Links.

When the display order of a zone group is updated, the change is reflected on the map for the

Edit Map Display Options page. The number, name and direction for each zone group can be

viewed from the map by hovering the mouse pointer over the zone group arrow (see Figure 5-7

below).

Figure 5-7. Zone Group Tooltip Showing the Number, Name, and Direction.

Tooltip for Zone Group 1 – 270 N Local

CHART R7 Detailed Design 5-4 03/02/2011

TSSs Displayed on Maps

This section describes the display of TSSs on the maps within the CHART GUI.

Layers Selection and Zoom Based Visibility

The TSS child layer selectors are grouped in the map layer selector under a parent TSSs layer

selector (see Figure 5-8 below). The TSS child layer selectors include a layer selector for

CHART TSSs and a separate layer selector for each external agency from which CHART has

imported TSSs. Checking the selector check box for the parent TSSs layer will make any child

layers that are checked visible on the map. Un-checking the selector check box for the parent

TSSs layer will make all child layers invisible on the map. Clicking on the link for the parent

TSSs layer selector will cause the child layer selectors to collapse/expand under the parent

selector.

The TSS layers are not visible on the map at the highest zoom levels. The zoom levels at which

the TSS layers are visible are configurable at the application level.

These same rules for TSS map layers apply on the nearby devices map. The TSS layers will

appear as in figure 4-8 for that map as well.

Figure 5-8. Map Layer Selector Showing TSS Layers Selected.

TSS Icons

All TSSs that have a location with a defined latitude/longitude are displayed on the maps in the

CHART GUI. The TSSs are displayed using either an icon from the list page or arrows to show

the zone groups. A TSS that has a defined bearing, at least one defined zone group that is

displayable on maps, and is online (and not comm. failed, comm. marginal, or hardware failed)

TSS Layers including external layers

Parent layer selector

Child layer selectors

CHART R7 Detailed Design 5-5 03/02/2011

will be displayed using a colored arrow per zone group to depict current speed information for

the TSS (see Figure 5-9 below). The arrow for each zone group will be red if the speed for that

zone group is between 0 and 30 mph, orange if the speed for that zone group is greater than 30

mph and less than or equal to 50 mph, or green if the speed is greater than 50 mph. The arrow for

a zone group will be gray if the speed data for the detector is more than 10 minutes old. A TSS

that does not have a defined bearing, has no defined zone groups that are displayable on maps, is

not online, or is online and comm. failed, comm. marginal, or hardware failed, will be displayed

using the icon from the device list for that particular TSS.

Zone group arrows are displayed on the maps based on the configured zone group display order

per direction. Starting at the location of the TSS, zone groups with lower display orders will

appear first and zone groups with higher display orders will appear further away.

Figure 5-9. Icons of TSSs in Different States on the Map.

TSS Tooltips and Callouts

Each TSS on the map will display a tooltip when the user hovers the mouse over the TSS icon

(or zone group arrows). The tooltip will contain the name of the TSS (see Figure 5-10 below).

Each TSS on the map will also display a callout when the user clicks on the TSS icon (or zone

group arrows). The callout will contain: the name, the icon indicating its current mode (online,

maintenance, or offline) and current status (comm. failure, comm. marginal, or hardware failure)

if applicable, a link to the TSS details page, the location, and one or more tables of zone group

information. The zone group information will contain configuration information and current

traffic parameters for each zone group (organized by direction) including: the zone group name,

the current volume, the current speed, and the current occupancy. This information will be

available to any user with the detailed VSO functional right. A user with the view summary VSO

functional right will see a current speed summary instead of the actual speed.

Online with

zone groups

Online with no

zone groups

Offline

Maintenance

CHART R7 Detailed Design 5-6 03/02/2011

Figure 5-10. TSS Tooltip and Callout Showing Number, Name, Direction, and Zone

Groups.

CHART R7 Detailed Design 5-7 03/02/2011

5.2 System Interfaces

5.2.1 Class Diagrams

5.2.1.1 TSSManagement (Class Diagram)

This class diagram contains the interfaces, structs, and typedefs that are to be defined in

IDL and provide the external interface to the TSSManagement package of the CHART II

system.

CHART R7 Detailed Design 5-8 03/02/2011

Mode

Changed

OpStatus

Changed

discriminator

equals

ConfigChanged

discriminator

equals

ObjectAdded

discriminator

equals

ObjectRemoved

discriminator

equals

CurrentStatus

EVENT_CHANNEL_TSS_DATA

«type»

ModeChangedEventInfo

«typedef»

ZoneGroupTrafficParms

«struct»

TSSListEntry

«typedef»

1

discriminator

equals

CurrentStatus
1

1

Revised for R7

Added setMapDisplayOptions()

1

discriminator

equals

ObjectRemoved

Direction

«typedef»

Identifier

1

DirectionValues

«interface»

RTMS

«interface»

TSSStatus

«typedef»

TSSEvent

«typedef»

GeoLocatable

«interface»

PortManager

«interface»

CommunicationMode

«enumeration»

TSSEventType

«enumeration»

TSSConfiguration

«typedef»

DataPort

«interface»

OperationalStatus

«enumeration»

TrafficParameters

«struct»

EVENT_CHANNEL_TSS_STATUS

«type»

OpStatusChangedEventInfo

«typedef»

ZoneGroup

«typedef»

ObjectAddedEventInfo

«typedef»

*

1

*

Revised for R7

Added m_bearing.

DisplayType

«typedef»

DisplayTypeValues

«interface»

New for R7

Revised for R7

Added:

m_displayType

m_displayOrder

11

1

1

*1

ExternalTSS

«interface»

ExternalTSSFactory

«interface»ExternalTSSConfiguration

«typedef»

ZoneTrafficParms

«struct»

*

SpeedRange

«struct»

1

1 *

1

1

discriminator

equals

ConfigChanged

1

1

communicates to

field device with

1 1

acquires port

using

RTMSFactory

«interface»

TransportationSensorSystemFactory

«interface»

TransportationSensorSystem

«interface»

CommEnabled

«interface»
UniquelyIdentifiable

«interface»

PortManagerCommsData

«typedef»PortLocationData

«typedef»

1

1

1

*

1 1

1

1

*

1

1

1

1

1

Mode

Changed

1

1

returns TSS objects in

list using

1

1

1

1

1

1 1

1

1

1

*

1

pushes

updates

within

1

*

1

1

OpStatus

Changed

*

1 discriminator

equals

ObjectAdded

byte[] m_id

String m_name

ObjectLocation m_location

Identifier m_ownerOrg

int m_dropAddress

short m_bearing

ZoneGroup[] m_zoneGroups

int m_pollIntervalSecs

CommPortConfig m_commPortCfg

PortLocationData m_portLocData[]

IPPortLocationData m_ipportLocData[]

boolean m_debugComms

int m_zoneGroupNum

string m_description

Direction m_direction

int[] m_zoneNumbers

int m_defaultSpeed

DisplayType m_displayType

short m_displayOrder

baseTSSConfig : TSSConfiguration

extID : Common.ExternalObjectIdentificationData

const short DISPLAY_NONE

const short DISPLAY_TOWARD_BEARING

const short DISPLAY_AWAY_FROM_BEARING

TransportationSensorSystem m_tss

TSSConfiguration m_config

TSSStatus m_status

discriminator():TSSEventType

configInfo():TSSConfiguration

statusInfo():TSSStatus

opStatusInfo():OpStatusChangedEventInfo

modeChangeInfo():ModeChangedEventInfo

objAddedInfo():ObjectAddedEventInfo

id():byte[]

getStatus():TSSStatus

getConfiguration(token:byte[]):TSSConfiguration

setConfiguration(token:byte[], config:TSSConfiguration):void

remove(token:byte[]):void

setLocation(token:AccessToken, location:ObjectLocation):void

setMapDisplayOptions(token:byte[], config:TSSConfiguration):void

getList():TSSListEntry[]

remove(byte[] token, byte[] id):void

string

ObjectAdded

ObjectRemoved

CurrentStatus

ConfigChanged

ModeChanged

OpStatusChanged

string

TransportationSensorSystem m_tssRef

byte[] m_tssID

byte[] m_id

CommunicationMode m_mode

createRTMS(byte[] token, TSSConfiguration):RTMS

createExternalTSS(byte[] token, ExternalTSSConfiguration) :

 ExternalTSS

byte[] m_id;

ZoneGroupTrafficParms[] m_zoneGrpTrafficParms

int m_avgSpeed

SpeedRange m_speedRange

CommunicationMode m_mode;

OperationalStatus m_opStatus;

long m_trafficParameterTimestamp;

byte[] m_id

OperationalStatus m_opStatus

updateStatus(byte[] token, TSSStatus status)

updateZoneGroups(byte[] token, ZoneGroupTrafficParms[] data)

int m_zoneGroupNum

TrafficParameters m_trafficParms

ZoneTrafficParms[] m_zoneTrafficParms

int m_speedData;

int m_volumeData;

int m_percentOccupancy

SpeedRange m_speedRange;

int m_beginSpeed;

int m_endSpeed;

int m_zoneNum

TrafficParameters m_trafficParms

Figure 5-11 TSSManagement (Class Diagram)

CHART R7 Detailed Design 5-9 03/02/2011

5.2.1.1.1 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put

online, or put in maintenance mode through a standard interface. These states typically

apply only to field devices. When a device is taken offline, it is no longer available for use

through the system and automated polling (if any) is halted. When put online, a device is

again available for use by TrafficEvents within the system and automated polling is enabled

(if applicable). When put in maintenance mode a device is offline (i.e., cannot be used by

TrafficEvents), and maintenance commands appropriate for the particular type of device are

allowed to help in troubleshooting.

5.2.1.1.2 CommunicationMode (Class)

The CommunicationMode class enumerates the modes of operation for a device: ONLINE,

OFFLINE, and MAINT_MODE. ONLINE is used to indicate the device is available to the

operational system. OFFLINE is used to indicate the device is not available to the online

system and communications to the device have been disabled. MAINT_MODE is used to

indicate that the device is available only for maintenance / repair activities and testing.

5.2.1.1.3 DataPort (Class)

A DataPort is a port that allows binary data to be sent and received. Ports of this type

support a receive method that allows a chunk of all available data to be received. This

method prevents callers from having to issue many receive calls to parse a device response.

Instead, this receive call returns all available data received within the timeout parameters.

The caller can then parse the data within a local buffer. Using this mechanism, device

command and response should require only one call to send and one call to receive.

5.2.1.1.4 Direction (Class)

This type defines a short value that is used to indicate a direction of travel as defined in

DirectionValues.

5.2.1.1.5 DirectionValues (Class)

This interface contains constants for directions as defined in the TMDD.

5.2.1.1.6 DisplayType (Class)

This type defines a short value that is used to indicate the display type of a zone group as

defined in DisplayTypeValues. The display type indicates whether a zone group arrow will

appear on the maps and if so the direction the zone group arrow will be displayed in

relation to the TSS bearing (e.g. toward the bearing or away from the bearing).

5.2.1.1.7 DisplayTypeValues (Class)

This interface contains constants for display types used by zone groups. The constant

include: DISPLAY_NONE (do not display on maps), DISPLAY_TOWARD_BEARING

(display toward the TSS bearing), and DISPLAY_AWAY_FROM_BEARING (display 180

CHART R7 Detailed Design 5-10 03/02/2011

degrees away from TSS bearing).

5.2.1.1.8 EVENT_CHANNEL_TSS_DATA (Class)

This is a static string that contains the name of the event channel used to push events that

contain Transportation Sensor System traffic parameter data. The following

TSSEventTypes are pushed on EVENT_CHANNEL_TSS_DATA channels:

CurrentStatus

5.2.1.1.9 EVENT_CHANNEL_TSS_STATUS (Class)

This is a static string that contains the name of the event channel used to push events

relating to the change in a Transportation Sensor System status and/or configuration. The

following TSSEventTypes are pushed on EVENT_CHANNEL_TSS_STATUS channels:

ObjectAdded

ObjectRemoved

ConfigChanged

ModeChanged

OpStatusChanged

5.2.1.1.10 ExternalTSS (Class)

This interface represents an External Systems TSS in the Chart System. I.E. a proxy for a

physical TSS outside of Chart.

5.2.1.1.11 ExternalTSSConfiguration (Class)

This class holds configuration data for an ExternalTSS. It extends the TSSConfiguration

data by including a reference to the base TSSConfig.

baseTSSConfig - Refernce to the base TSSConfig.

extID - This objects holds the External System Name / Ext Agency / Ext id for this

Extenral TSS. This uniquely identifies it in Chart.

5.2.1.1.12 ExternalTSSFactory (Class)

This interface extends the TransportationSensorSystemFactory interface to allow support of

ExternalTSS objects in Chart.

CHART R7 Detailed Design 5-11 03/02/2011

5.2.1.1.13 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their

users.

5.2.1.1.14 Identifier (Class)

Wrapper class for a CHART2 identifier byte sequence. This class will be used to add

identifiable objects to hash tables and perform subsequent lookup operations.

5.2.1.1.15 ModeChangedEventInfo (Class)

This struct contains information pushed with a ModeChanged event.

m_id - The ID of the TSS whose communication mode has changed.

m_mode - The new communication mode for the TSS.

5.2.1.1.16 ObjectAddedEventInfo (Class)

This structure contains information passed in the ObjectAdded event pushed on a TSS

status event channel. It contains the object reference that has been added along with its

configuration values and current status values.

5.2.1.1.17 OperationalStatus (Class)

The OperationalStatus class enumerates the types of operational status a device can have:

OK (normal mode), COMM_FAILURE (no communications to the device), or

HARDWARE_FAILURE (device is reachable but is reporting a hardware failure).

5.2.1.1.18 OpStatusChangedEventInfo (Class)

This struct contains data passed with an OpStatusChanged event.

m_id - The ID of the TSS whose operational status has changed.

m_opStatus - The new operational status for the device.

5.2.1.1.19 PortLocationData (Class)

This class contains configuration data that specifies the communication server(s) to use to

communicate with a device.

m_commsData - One or more objects identifying the communications server (PortManager)

to use to communicate with the device, in order of preference.

m_portType - The type of port to use to communicate with the device (ISDN modem,

POTS modem, direct, etc.)

m_portWaitTimeSecs - The maximum number of seconds to wait when attempting to

acquire a port from a port manager.

CHART R7 Detailed Design 5-12 03/02/2011

5.2.1.1.20 PortManager (Class)

A PortManager is an object that manages shared access to communications port resources.

The getPort method is used to request the use of a port from the PortManager. Requests for

ports specify the type of port needed, the priority of the request, and the maximum time the

requester is willing to wait if a port is not immediately available. When the port manager

returns a port, the requester has exclusive use of the port until the requester releases the port

back to the PortManager or the PortManager reclaims the port due to inactivity.

5.2.1.1.21 PortManagerCommsData (Class)

This class contains values that identify a port manager and the phone number to dial to

access a device from the given port manager. This class exists to allow for the phone

number used to access a device to differ based on the port manager to take into account the

physical location of the port manager within the telephone network. For example, when

dialing a device from one location the call may be long distance but when dialing from

another location the call may be local.

5.2.1.1.22 RTMS (Class)

The Remote Traffic Microwave Sensor (RTMS) is a detector manufactured by EIS, Inc.

capable of providing lane level volume, speed, and occupancy data for up to 8 lanes of a

roadway at a single location. This interface serves to identify TransportationSensorSystem

objects as being of the type RTMS. It also provides a place holder for future operations that

may not apply to TSS objects in general and are instead RTMS specific.

5.2.1.1.23 RTMSFactory (Class)

Objects which implement RTMSFactory are capable of adding an RTMS to the system.

5.2.1.1.24 SpeedRange (Class)

This struct is used to specify a speed range. The speed range is defined in MPH and has an

upper and lower limint inclusive. Note: m_endSpeed of zero means range is >

m_beginSpeed. MPH is implied.

5.2.1.1.25 TrafficParameters (Class)

This struct contains traffic parameters that are sensed and reported by a Traffic Sensor

System such as the RTMS.

m_speedData - The arithmetic mean of the speeds collected over a sample period in miles

per hour in tenths. (thus 550 == 55.0 MPH) Valid values are 0 to 2550. A value of 65535

is used to indicate a missing or invalid value (such as when the volume for the sample

period is zero).

m_volumeData - The count of vehicles for the sample period. Valid values 0 to 65535. A

value of 65535 represents a missing value.

CHART R7 Detailed Design 5-13 03/02/2011

m_percentOccupancy - The percentage of occupancy of the roadway in tenths of a percent.

(thus 1000 = 100.0 percent). Valid values are 0 to 1000. A value of 65535 represents a

missing or invalid value.

5.2.1.1.26 TransportationSensorSystem (Class)

A Transportation Sensor System (TSS) is a generic term used to describe a class of

technology used for detection within the transportation industry. Examples of TSS devices

range from the advanced devices, such as RTMS, to basic devices, such as single loop

detectors.

This software interface is implemented by objects that provide access to the traffic

parameters sensed by a Transportation Sensor System. Transportation Sensor Systems are

capable of providing detection for one or more detection zones. A single loop detector

would have one detection zone, while an RTMS would have 8 detection zones.

5.2.1.1.27 TransportationSensorSystemFactory (Class)

This interface is implemented by objects that are used to create and serve

TransportationSensorSystem (TSS) Objects. All factories of TSS objects can return the list

of TSS objects which they have created and serve. Derived interfaces are used to provide

factories to create specific make, models, and types of TransportationSensorSystem objects.

5.2.1.1.28 TSSConfiguration (Class)

This class holds configuration data for a transportation sensor system (TSS) as follows:

m_id - The unique identifier for this TSS. This field is ignored when the object is passed to

the TSS to change its configuration.

m_name - The name used to identify the TSS.

m_location - A descriptive location of the TSS.

m_dropAddress - The drop address for the device.

m_bearing - The bearing in degrees for displaying the TSS on the map. Valid values are

from -1 to 359 (-1 = bearing not defined, 0 = East, 90 = North, 180 = West, and 270 =

South). The default value is -1.

m_zoneGroups - Logical groupings of detection zones, used to provide a single set of

traffic parameters for one or more detection zones.

m_pollIntervalSecs - The interval on which the TSS should be polled for its current traffic

parameters (in seconds).

m_commPortCfg - Communication configuration values.

m_portLocData - Configuration information that determines which port manager(s) should

be used to establish a connection with the SensorSystem.

CHART R7 Detailed Design 5-14 03/02/2011

m_debugComms - Flag used to enable/disable the logging of communications data for this

TSS. When enabled, command and response packets exchanged with the device are logged

to a debugging log file.

5.2.1.1.29 TSSEvent (Class)

This class is a CORBA union that contains varying data depending on the current value of

the discriminator.

If the discriminator is ConfigChanged, this union contains a TSSConfig object.

If the discriminator is ObjectAdded, this union contains an ObjectAddedEventInfo object.

If the discriminator is ObjectRemoved, this union contains a byte[] containing the unique

identifier for the Traffic Sensor System that was removed.

If the discriminator is CurrentStatus the union contains an array of one or more TSSStatus

objects.

If the discriminator is ModeChanged, the union contains a ModeChangedEventInfo.

If the discriminator is OpStatusChanged, the union contains an OpStatusChangedEventInfo

object.

5.2.1.1.30 TSSEventType (Class)

This enumeration defines the types of events that may be pushed on an event channel by a

Transportation Sensor Status object. The values in this enumeration are used as the

discriminator in the TSSEvent union.

ObjectAdded - a TransportationSensorSystem has been added to the system.

ObjectRemoved - a TransportationSensorSystem has been removed from the system.

CurrentStatus - The event contains the current status of one or more Transportation Sensor

System objects.

ConfigChanged - One or more configuration values for the Transportation Sensor System

have been changed.

ModeChanged - The communications mode of the TransportationSensorSystem has

changed.

OpStatusChanged - The operational status of the TransportationSensorSystem has changed.

5.2.1.1.31 TSSListEntry (Class)

This struct is used to pass a TransporationSensorSystem object together with its ID. This

struct is provided for convenience because when discovering an object, it is usually

required to make a call to the object's getID() method.

CHART R7 Detailed Design 5-15 03/02/2011

5.2.1.1.32 TSSStatus (Class)

This class holds current status information for a TSS as follows:

m_id - The ID of the TSS for which this status applies.

m_zoneGrpTrafficParms - The traffic parameters for each ZoneGroup of the Transporation

Sensor System as specified in the Sensor system's TSSConfiguration object.

m_mode - The communication mode of the TSS.

m_opStatus - The operational status for the TSS.

m_trafficParameterTimestamp - A timestamp that records when the traffic parameter data

was collected from the device.

m_avgSpeed - average speed at the detector leve.

m_speedRange - speed range at the detector level (avg speed).

5.2.1.1.33 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the

system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

5.2.1.1.34 ZoneGroup (Class)

This class is used to group one or more detection zones of a Transportation Sensor System

into a logical grouping. Traffic parameters for all detection zones included in the group are

averaged to provide a single set of traffic parameters for the group.

5.2.1.1.35 ZoneGroupTrafficParms (Class)

This struct contains traffic parameters for a ZoneGroup.

m_zoneGroupNumber - The number of the zone group for which the traffic parameters

apply.

m_trafficParms - The traffic parameter values for the zone group.

m_zoneTrafficParms - zone parms for each zone in the group.

5.2.1.1.36 ZoneTrafficParms (Class)

This struct contains traffic parameters for a Zone.

m_zoneNumber - The number of the zone for which the traffic parameters apply.

m_trafficParms - The traffic parameter values for the zone.

CHART R7 Detailed Design 5-16 03/02/2011

5.3 GUI TSS Data Classes

5.3.1 Class Diagrams

5.3.1.1 GUITSSDataClasses (Class Diagram)

This diagram shows objects related to adding TCP/IP connection functionality and geo

location to TSS's.

WebZoneGroup

MapFeature

«interface»

Revised for R7

Implemented MapFeature interface.

Added bearing.

Added getJSONForMap method.

Revised for R7

Added display type

and display order.

WebObjectLocationSupporter

«interface»

WebIPPortLocationData

WebTSS

Searchable

«interface»

WebDevice

«interface»

1

FolderEnabled

«interface»

1 1

0..1

*

NameFilterable

«interface»

WebAdministered

«interface»

WebTSSConfiguration

1

getConfig() : WebTSSConfiguration

getSpeedDesc() : String

getSpeedRangeDesc() : String

getBearing() : int

setBearing(bearing: int): void

getJSONForMap(jsonSupporter: MapFeatureJSONSupporter,

 extendedData: boolean): JSONObject

m_bearing: int

getTCPIPConfiguration():WebTCPIPConfig

getLocation() : WebObjectLocation

isExternal():boolean

getZoneGroups(): WebZoneGroup[]

updateWebZoneGroups(): void

m_config: TSSConfiguration

m_webGroups: WebZoneGroup[]

getIPAddress() : String

getTCPPortNumber() : int

m_ipPortLocationData : IPPortLocationData

getDisplayType(): DisplayType

setDisplayType(type: int): void

getDisplayOrder(): int

setDisplayOrder(order: int): void

m_zoneGroup: ZoneGroup

Figure 5-12 GUITSSDataClasses (Class Diagram)

5.3.1.1.1 FolderEnabled (Class)

This interface provides access to information about an object that can be stored in a folder.

5.3.1.1.2 MapFeature (Class)

This interface provides data necessary for displaying a feature on a map.

5.3.1.1.3 NameFilterable (Class)

This java interface is implemented by classes which can be filter by name within the

ObjectCache. A NameFilter object is passed into the ObjectCache to select NameFilterable

objects in the cache.

5.3.1.1.4 Searchable (Class)

This interface allows objects to be searched for via a substring search.

5.3.1.1.5 WebAdministered (Class)

This interface allows the implementing class to be administered via the trader console

CHART R7 Detailed Design 5-17 03/02/2011

pages.

5.3.1.1.6 WebDevice (Class)

This interface contains common functionality for CHART devices.

5.3.1.1.7 WebIPPortLocationData (Class)

This class wraps the IPPortLocationData IDL structure and provides accessor methods to

get the data. This class has data for identifying a TCP/IP address and port.

5.3.1.1.8 WebObjectLocationSupporter (Class)

This interface allows common processing for objects supporting an ObjectLocation via the

WebObjectLocation wrapper class.

5.3.1.1.9 WebTSS (Class)

This class wraps the TransportationSystemSensor CORBA interface, caches data, and

provides access to the cached data.

5.3.1.1.10 WebTSSConfiguration (Class)

This class wraps the TSSConfiguration IDL structure and provides accessors for easy

access to the data.

5.3.1.1.11 WebZoneGroup (Class)

This class wraps the ZoneGroup IDL structure and provides accessors for easy access to the

data.

CHART R7 Detailed Design 5-18 03/02/2011

5.4 Package chartlite.servlet.tss

5.4.1 Classs Diagrams

5.4.1.1 chartlite.servlet.tss Classes

This diagram shows CHART GUI servlet classes related to traffic sensor signs.

Revised for R7

Added:
getEditTSSMapDisplayOptionsForm
processUpdateTSSBearing
processUpdateZoneGroupDisplayDirection
processUpdateZoneGroupDisplayOrder
processUpdateMapDisplayOptions

EditObjectLocationSupporter
«interface»

AddRTMSFormData

EditTSSLocationSupporter

RequestHandler
«interface»

TSSReqHdlr

init(supporter:RequestHandlerSupporter) : void
getActions() : ArrayList<RequestAction>
processRequest(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
shutdown(supporter:RequestHandlerSupporter) : void

setTSSConfigBasicSettings(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter) : String
getEditTSSLocationForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter) : String
setTSSConfigCommSettings(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter): String
processViewTSSProps(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
getEditTSSMapDisplayOptionsForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
processUpdateTSSBearing(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
processUpdateZoneGroupDisplayDirection(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
processUpdateZoneGroupDisplayOrder(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
processUpdateMapDisplayOptions(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

getName() : String
getObjectLocation() : WebObjectLocation
getUpdateParentPageURLParamStr() : String
hideGeoLocationFields() : boolean
allowComboDirections() : boolean
allowNoneDirection() : boolean
setObjectLocation(location:ObjectLocation,
 supporter : RequestHandlerSupporter,
 req : HttpServletRequest) : String

EditTSSLocationSupporter(
 tss : WebTSS)
EditTSSLocationSupporter(
 formData : AddTSSFormData)

m_tss : WebTSS
m_formData : AddRTMSFormData

getConfig() : WebTSSConfiguration
getID() : String
getLastErrorMessage() : String
getSelectedFactoryID() : Identifier
setLastErrorMessage(errMsg : String) : void
setSelectedFactoryID(id : Identifier) : void

m_config : WebTSSConfiguration
m_lastErrorMsg : String
m_selectedFactoryID : Identifier
m_formDataID : String

Figure 5-13 chartlite.servlet.tss_classes (Class Diagram)

5.4.1.1.1 AddRTMSFormData (Class)

This class represents the data in the Add RTMS form.

5.4.1.1.2 EditObjectLocationSupporter (Class)

This interface provides functionality allowing the location data to be edited. (For example,

the target of the edited location may be an existing object, or it may be a form data object

for creating a new object).

CHART R7 Detailed Design 5-19 03/02/2011

5.4.1.1.3 EditTSSLocationSupporter (Class)

This class is used to support editing the location of an existing or new TSS.

5.4.1.1.4 RequestHandler (Class)

This interface specifies methods that are to be implemented by classes that are used to

process requests.

5.4.1.1.5 TSSReqHdlr (Class)

This class handles requests related to traffic sensor systems such as RTMS.

CHART R7 Detailed Design 5-20 03/02/2011

5.4.2 Sequence Diagrams

5.4.2.1 chartlite.servlet.tss:processUpdateZoneGroupDisplayDirection

This diagram shows the process of updating the Display Direction for a TSS zone group in

the servlet. The request parameters (tssID , zoneGroupNumber, and displayDirection) are

parsed to get the ID of the TSS, the zone group number, and the new value of the display

direction. If any of the parameters are missing, no further processing is done and an error is

returned to the caller with an error template. Using the tssID, the TSS is retrieved from the

cache. If the TSS is null, no further processing is done and an error is returned to the caller

with an error template. The TSS is then used to check if the user has rights to configure a

TSS. If the user does not have the rights to configure a TSS, no further processing is done

and an error is returned to the caller with an error template. The TSS configuration is

retrieved from the temporary object store using the ID of the TSS. If the TSS configuration

is null, no further processing is done and an error is returned to the caller with an error

template. The display direction is updated for the appropriate zone group (based on the zone

group number) in the temporary TSS configuration. The Velocity context is populated with

the required objects (the TSS ID, the temporary TSS configuration, the page title, and the

page content) and the template name is returned to the caller.

CHART R7 Detailed Design 5-21 03/02/2011

WebTSSConfiguration

tempWebTSSConfig

[tempWebTSSConfig == null]
error

getZoneGroup(zoneGroupNumber)

WebZoneGroup

setDisplayDirection(displayDirection)

TSSReqHdlr

ServletUtil

RequestHandlerSupporter

UserLoginSessionImpl

NavLinkRights

The process for updating the display order
for a zone group is similar, but more than
one zone group must be updated to change
the display order.

TempObjectStore

Context

[error]
put("errMsg", errMsg)

getProperties()

[error]
put("pageContent", errorTemplate)

getNavLinkRights()

put("pageTitle", pageTitle)

put("pageContent", pageContent)

put("tssID", tssID)

put("tssConfig", tempWebTSSConfig)

templateName

canConfigureTSS(tss)

[no configureTSS right]
error

getUserLoginSession(req)
user

processUpdateZoneGroupDisplayDirection
(req, resp, ctx, supporter)

getIdentifierParam(req, "tssID", null)

[tssID not specified]
error

getTempObjectStore()

tss

[tss == null]
error

[error]
errorTemplate

getObject("EditMapDisplayOptions_" + tss.getID().toString())

getCachedObject(tssID)

HttpServletRequest

getParameter("zoneGroupNumber")

getParameter("displayDirection")

[zoneGroupNumber not specified]
error

[displayDirection not specified]
error

[zoneGroup == null]
error

Figure 5-14 chartlite.servlet.tss:processUpdateZoneGroupDisplayDirection (Sequence

Diagram)

CHART R7 Detailed Design 5-22 03/02/2011

5.4.2.2 chartlite.servlet.tss:processUpdateMapDisplayOptions

This diagram shows the process of updating the Map Display Options for a TSS in the

servlet. The request parameters (tssID , bearing, zoneGroupNumber, displayDirection, and

displayOrder) are parsed to get the ID of the TSS, the TSS bearing, the number for each

zone group, the display direction for each zone group, and the display order for each zone

group. If any of the parameters are missing, no further processing is done and an error is

returned to the caller with an error template. Using the tssID, the TSS is retrieved from the

cache. If the TSS is null, no further processing is done and an error is returned to the caller

with an error template. The TSS is then used to check if the user has rights to configure a

TSS. If the user does not have the rights to configure a TSS, no further processing is done

and an error is returned to the caller with an error template. A user with the rights to

configure a TSS can set the map display options in any mode (online, offline or

maintenance mode). The TSS configuration is retrieved from the temporary object store

using the ID of the TSS. If the TSS configuration is null, no further processing is done and

an error is returned to the caller with an error template. The parameter values are used to

update the temporary TSS configuration. The temporary TSS configuration is then passed

to the Web TSS object to update its configuration. The WebTSS makes the CORBA call to

the TSS object to set the map display options in the TSS Service. The Velocity context is

populated with the required objects (the TSS ID, the temporary TSS configuration, the page

title, and the page content) and the template name is returned to the caller.

CHART R7 Detailed Design 5-23 03/02/2011

TSS

setMapDisplayOptions(newConfig)

getConfiguration()

[tssID not specified]

error

getTempObjectStore()

tempWebTSSConfig

tss

[tss == null]

error

getObject("EditMapDisplayOptions_" + tss.getID().toString())

getCachedObject(tssID)

getParameterValues("zoneGroupNumber")

getParameterValues("displayDirection")

[zoneGroupNumber[] not specified]

error

[bearing not specified]

error

[displayOrder[] not specified]

error

[displayDirection[] not specified]

error

getParameter("bearing")

getParameterValues("displayOrder")

updateMapDisplayOptions(tempWebTSSConfig)

[error]

errorTemplate

TSSReqHdlr

ServletUtil

HttpServletRequest

RequestHandlerSupporter

UserLoginSessionImpl

NavLinkRights

TempObjectStore

WebTSSConfiguration

Context

[tempWebTSSConfig == null]

error

updateMapDisplayOptions(bearing, zoneGroupNumber[], displayDirection[], displayOrder[])

[error]

put("errMsg", errMsg)

[error]

put("pageContent", errorTemplate)

getNavLinkRights()

WebTSS

put("targetURL", "app?action=viewTSSProps&tssID=" + tss.getID())

templateName

canConfigureTSS(tss)

[no configureTSS right]

error

getUserLoginSession(req)

user

processUpdateZoneGroupDisplayDirection

(req, resp, ctx, supporter)

getIdentifierParam(req, "tssID", null)

At this point, the configuration in the WebTSS is

updated using the tempWebTSSConfig so that it

matches the configuration in the TSS.

Figure 5-15 chartlite.servlet.tss:processUpdateMapDisplayOptions (Sequence Diagram)

CHART R7 Detailed Design 5-24 03/02/2011

5.4.2.3 chartlite.servlet.tss:getEditTSSMapDisplayOptionsForm

This diagram shows the process of displaying the TSS Map Display Options Form in the

servlet. The tssID request parameter is parsed to get the ID of the TSS. If this parameter is

missing, no further processing is done and an error is returned to the caller with an error

template. Using the tssID, the TSS is retrieved from the cache. If the TSS is null, no further

processing is done and an error is returned to the caller with an error template. The TSS is

then used to check if the user has rights to configure a TSS. If the user does not have the

rights to configure a TSS, no further processing is done and an error is returned to the caller

with an error template. A user with the rights to configure a TSS can set the map display

options in any mode (online, offline or maintenance mode). The configuration is retrieved

from the TSS and a deep copy of the configuration is obtained. The temporary

configuration is added to the temporary object store using the ID of the TSS as a key. The

Velocity context is populated with the required objects (the TSS ID, the temporary TSS

configuration, the page title, and the page content) and the template name is returned to the

caller.

CHART R7 Detailed Design 5-25 03/02/2011

This method returns a deep copy of the
webTSSConfig (tempWebTSSConfig) that
is added to the TempObjectStore and used
for local updates to the Map DisplayOptions.

[error]
errorTemplate

Context

put("pageTitle", pageTitle)

put("pageContent", pageContent)

put("tssID", tssID)

put("tssConfig", tempWebTSSConfig)

getProperties()

getPopupTemplate()
templateName

templateName

getEditTSSMapDisplayOptionsForm
(req, resp, ctx, supporter)

[tssID not specified]
error

add("EditMapDisplayOptions_" + tss.getID().toString(), tempWebTSSConfig)

tss

[error]
put("errMsg", errMsg)

[error]
getProperties()

[error]
getErrorTemplate()

errorTemplate

[error]
put("pageContent", errorTemplate)

webTSSConfig

getNavLinkRights()

canConfigureTSS(tss)

[no configureTSS right]
error

UserLoginSessionImpl

NavLinkRights

getUserLoginSession(req)
user

TSSReqHdlr

ServletUtil

TempObjectStore

WebTSS

[tss == null]
error

RequestHandlerSupporter

ServletProperties

getIdentifierParam(req, "tssID", null)

getTempObjectStore()

getCachedObject(tssID)

getConfig()

getTSSConfigDeepCopy(webTSSConfig)

Figure 5-16 chartlite.servlet.tss:getEditTSSMapDisplayOptionsForm (Sequence Diagram)

CHART R7 Detailed Design 5-26 03/02/2011

5.5 Package chartlite.servlet.map

5.5.1 Class Diagrams

5.5.1.1 MapClasses (Class Diagram)

This diagram shows classes related to handling map-related requests.

Revised for R7
Added canViewVSOSummaryData()
Added canViewVSODetailedData()

Revised for R7

Added Envelope param to:

getHomePageMapDataJSON
getHomePageMapSingleLayerJSON
getSpecifyLocationMapDataJSON

MapFeatureJSONSupporterImpl

RequestHandler
«interface»

MapFeatureJSONSupporter
«interface»

MapReqHdlr

getHomePageMapDataJSON(req : HttpServletRequest, resp : HttpServletResponse, supporter : RequestHandlerSupporter, envelope: Envelope) : String
getHomePageMapSingleLayerJSON(req : HttpServletRequest, resp : HttpServletResponse, supporter : RequestHandlerSupporter, envelope: Envelope) : String
getSpecifyLocationMapDataJSON(req : HttpServletRequest, resp : HttpServletResponse, supporter : RequestHandlerSupporter, envelope: Envelope) : String
getCloseDevicesMapDataJSON(req : HttpServletRequest, resp : HttpServletResponse, supporter : RequestHandlerSupporter) : String
getResponseDeviceIDToTEAndRPIMap(supporter : RequestHandlerSupporter) : HashMap[Identifier, HashSet[Pair[Identifier,Identifier]]]
getFeatures(supporter : RequestHandlerSupporter, featureClasses : ArrayList, referencePoint : GeoLocation, radius : double) :
 HashMap[Class, ArrayList[MapFeature]]
getDefaultFeatureClassLayerMap() : HashMap[Class, String]
getFeatures(supporter : RequestHandlerSupporter, featureClasses : ArrayList):MapFeature[]

userCanViewTrafficEventSensitiveDetails() : boolean
getEventAndResponsePlanItemIDsForDevice(deviceID:Identifier) :
 Collection[Pair[Identifier, Identifier]]
getTrafficEvent() : WebTrafficEvent
canViewVSOSummaryData(tss:WebTSS):boolean
canViewVSODetailedData(tss:WebTSS):boolean

m_session : UserLoginSessionImpl
m_deviceIDToEventAndResponsePlanItemIDsMap :
 HashMap[Identifier HashSet[Pair[Identifier][Identifier]]]
m_trafficEvent : WebTrafficEvent

Figure 5-17 MapClasses (Class Diagram)

5.5.1.1.1 MapFeatureJSONSupporter (Class)

This interface supplies information necessary for MapFeatures to build JSON for the map.

5.5.1.1.2 MapFeatureJSONSupporterImpl (Class)

This class implements the MapFeatureJSONSupporter interface to supply data necessary

for map features to build JSON necessary to represent their data.

CHART R7 Detailed Design 5-27 03/02/2011

5.5.1.1.3 MapReqHdlr (Class)

This class handles requests related to map functionality.

5.5.1.1.4 RequestHandler (Class)

This interface specifies methods that are to be implemented by classes that are used to

process requests.

CHART R7 Detailed Design 5-28 03/02/2011

5.5.2 Sequence Diagrams

5.5.2.1 MapReqHdlr:getHomePageMapDataJSON

This diagram shows how the request for the Home Page Map JSON data is handled. A

HashMap is created to map the feature classes to layer names. A call is made to get all

MapFeature objects that are devices or traffic events. For each feature class, the features of

that class are retrieved and each feature is called to build a JSONObject, passing a JSON

supporter object that features may use to query necessary information. If an Envelope

describing the map extent was provided in the request, the feature is only included in the

JSON if its location is contained in the Envelope. If the feature is a TSS, the

addJSONFeaturesForTSSLayers method is called to add all TSS layers (CHART and

external) to the JSON. The details of this method are shown on the

MapReqHdlr:addJSONFeaturesForTSSLayers sequence diagram. The JSONObject for

each layer is then added to the array of layer data. Finally the layer data and other

information are added to the JSON object representing all of the map data, and the JSON

object is sent via the response.

Envelope is parsed from request
parameters (right, left, top, and
bottom) and passed in as an
argument. Note: It may be null.

RequestHandlerSupporter

[if TE]
getTrafficEventJSON(trafficEvent, user,
centerEventsOnly, supporter, jsonLayers)

getBooleanParam("centerEventsOnly")

getUserLoginSession()

isExternal()

[if featureClass == TSS]
addJSONFeaturesForTSSLayers

(jsonSupporter, envelope, jsonLayers)

User

MapReqHdlr ServletUtil

MapFeature

featureClassLayerMap

This is a mapping from feature
class to output layer name.MapFeatureJSONSupporterImpl

featuresByClass

This is a mapping from requested feature classes to a list of
MapFeatures for that class (populated by getFeatures().

HashMap

HashMap

JSONObject

JSONArray

JSONArray

JSONObject

getHomePageMapDataJSON
(req, resp, supporter, envelope)

JSONObject

create

[layerName != null]
add(jsonObject)

[* for each
feature
of class]

create

get(featureClass)
String (layerName)

create

put("layerID", layerName)

getDefaultFeatureClassLayerMap()

[if featureClass == TSS

If the coordinate of the feature location
is not contained within the envelope, the
feature is not added to the JSON returned
to the map.

getFeatures(supporter, featureClasses)

HashMap

MapFeature[]

[envelope != null]
contains(coordinate)

jsonLayers

This an array containing all json layers
that will be returned to the map.

location

coordinate

[envelope != null]
create

[envelope != null]
getGeoLocation()

jsonFeaturesOnLayer

This is an array of all features on a layer
that will be added to the jsonLayers object.

jsonLayer

This JSON object contains all
the data for a feature layer.

mapJSON

This JSON object contains the
JSON data returned to the map
includingall features on all layers.

Envelope

put("features", jsonFeaturesOnLayer)

add(jsonLayer)

create

put("mapID", "homePageMap")

put("layers", jsonLayers)

sendJSONObject(resp, mapJSON)
null

create

[* for each
feature
class]

create(supporter, user, null)

create

get(featureClass)

[if not TE]
getJSONForMap(mapFeatureJSONSupporterImpl)

Coordinate

Details of this method are on
the getTrafficEventJSON
sequence diagram.

[isExternal == true]

[contains(coordinate) == false]

user

Details of this method are on the
addJSONFeaturesForTSSLayers
sequence diagram.

Figure 5-18 MapReqHdlr:getHomePageMapDataJSON (Sequence Diagram)

CHART R7 Detailed Design 5-29 03/02/2011

5.5.2.2 MapReqHdlr:getTrafficEventJSON

This interface specifies methods that are to be implemented by classes that are used to

process requests.

This diagram shows how the JSON for a Traffic Event is created. If the event is not open,

not JSON will be created. If the centerEventsOnly flag is true, the controlling operations

center for the Traffic Event and the user’s operations center must match; otherwise, no

JSON will be created. Once the JSON is obtained from the Traffic Event, the

trafficEventsExtent Envelope object is expanded to include the location of the event. This

Envelope is returned with the JSON to the map to describe the extent of the Traffic Events

on the map. The JSON for the Traffic Event is then returned to the caller.

UserLoginSessionImpl

WebOpCenter

Coordinate

Envelope

isOpen()

getControllingOpCenterID()

String(controllingOpCenterIDStr)

getID()

String(userOpCenterIDStr)

[centerEventsOnly == true && Op Center IDs Are Not Equal]

create

[trafficEventsExtent == null]
create(coordinate)

getJSONForMap(supporter)

[featureJSON == null]

MapReqHdlr

If the map is showing center
events only and the feature is
a WebTrafficEvent, only get the
JSON for the object and add it to the
layer if its controlling op center
matches the Operations Center the
user is currently logged in at.

getTrafficEventJSON
(trafficEvent, user, centerEventsOnly, trafficEventsExtent)

[Event Is Not Open]

toString()

getWebOpCenter()

toString()

controllingOpCenterID.equals(userOpCenterIDStr)

getGeoLocation()

coordinate

[trafficEventsExtent != null]
expandToInclude(coordinate)

featureJSON

System

If any Traffic Events are added to
the JSON, this Envelope is also
added to the JSON to define the
extents for the Traffic Events.

featureJSON

WebTrafficEvent

Identifier

String

Figure 5-19 :getTrafficEventJSON (Sequence Diagram)

CHART R7 Detailed Design 5-30 03/02/2011

5.5.2.3 MapReqHdlr:addJSONFeaturesForTSSLayers

This diagram shows how the JSON for each TSS layer is added to the array containing

JSON for all map layers. Since a TSS can be either a CHART TSS or an External TSS, a

separate JSON array must be created for the CHART TSS layer and each of the External

TSS layers. Each of these JSON arrays contains the JSON for all TSSs on that layer. The

first step for each TSS is to determine if its location is contained in the envelope passed into

the method as an argument. This envelope describes the current extent of the map and can

be null if it is not applicable. If the envelope does not contain the TSS’s location the JSON

for the TSS is not included in the JSON array for the appropriate layer. When building the

JSONObject for the TSS user rights are checked to ensure that the user is only provided the

level of VSO data that they have been granted permission to see (if any). If the TSS is a

CHART TSS, “CHART” is used for the owning organization name (and thus the layer

name). If the TSS is an External TSS, the owning organization name is retrieved from the

External TSS Configuration. The owning organization name is then used to store the JSON

array for a specific layer in a HashMap for later retrieval. The JSON for each TSS in a

specific layer is added to the JSON array for that layer in the HashMap. Once all TSSs have

been processed, the JSON array for each TSS layer is added to the array containing JSON

for all map layers. The array containing JSON for all map layers is then returned to the

caller.

User rights are checked to verify that the
JSON used to build the map callout for the
tss contains only the allowed level of VSO data.

MapFeatureJSONSupporter

canViewVSOSummaryData(tss)

canViewDetailedVSOData(tss)

[contains(coordinate) == false]

System

WebExternalTSSConfiguration

JSONArray

If the TSS is not an External TSS,
owningOrgName will be set to "CHART".

JSONArray

JSONObject

[isExternal == true]
getExternalConfiguration()

String(owningOrgName)

get(owningOrgName)

owningOrgArray

put("layerID", owningOrgName)

get(owningOrgName)

getJSONForMap(jsonSupporter)

HashMap

MapFeature

Coordinate

addJSONFeaturesForTSSLayers
(jsonSupporter, envelope, jsonLayers)

[* for each feature]

coordinate

This array contains the
JSON for all TSS layers
(CHART and External).

[envelope != null]
create

isExternal()

[isExternal == true]
getOwningOrgName()

containsKey(owningOrgName)

add(featureJSON)

[containsKey == false]
create

[containsKey == false]
put(owningOrgName, owningOrgArray)

put("features", owningOrgArray)

MapReqHdlr

orgMap

This map contains a JSONArray of feature
data for each Organization that
currently owns external TSSs and CHART.

Envelope

If the coordinate of the feature location
is not contained within the envelope, the
feature is not added to the JSON returned
to the map.

create

[envelope != null]
getGeoLocation()

[envelope != null]
contains(coordinate)

jsonLayers

This array is passed into the
method as an argument. It
contains JSON for all Map layers.

WebTSS

WebExternalTSS

Figure 5-20 :addJSONFeaturesForTSSLayers (Sequence Diagram)

CHART R7 Detailed Design 5-31 03/02/2011

5.5.2.4 MapReqHdlr:getCloseDevicesMapDataJSON

This diagram shows how the request for the Close Devices Map JSON data is handled. The

traffic event ID is used to retrieve the WebTrafficEvent, and the radius parameter is also

parsed. An Envelope object is created to represent the extent of the traffic event and device

locations. A HashMap is created to map the feature classes to layer names. Another

HashMap is built for looking up the traffic events and response plan items for a given

response device (DMS or HAR), which are displayed in the DMS/HAR callout. A call is

made to get all MapFeature objects that are devices and are within the specified radius from

the traffic event. Each class of devices is handled in a loop. If the device class is TSS, a

utility method is called to create the layers based on whether the TSS is internal or external,

and if it is external based on the owning Organization. If the device class is not TSS, the

features of that class are retrieved from the HashMap and each feature is called to build a

JSONObject, passing a context object that features may use to query necessary information.

The JSONObject is then added to the list for the layer, and the envelope is expanded for the

device's location. The traffic event is added on its own layer in the JSON data. Finally the

layer data and other information are added to the JSON object representing all of the map

data, and the JSON object is sent via the response.

Added in R7

TSS devices are placed
on a group of layers rather than
a single layer using the
addJSONFeaturesForTSSLayers()
utility method.

[deviceClass == TSS]
addJSONFeaturesForTSSLayers()

[deviceClass == TSS]
return

WebTrafficEvent or null
[not found]
return null

getDoubleParam("radius", 5)

User

getCloseDevicesMapDataJSON(
req, resp, supporter)

create

expand(featureCoordinates)

add(jsonObject)
[* for each

feature
of class]

create

HashMap

get(deviceClass)

Envelope

This is a mapping from feature
class to output layer name.

getGeoLocation()

create(eventLocation)

getDefaultFeatureClassLayerMap()

WebTrafficEvent

String (layer name)

ServletUtil
RequestHandler

Supporter MapFeature

put("layerID", layerName)

add(jsonLayer)

getIdentifierParam(
"trafficEventID")

getCachedObject(trafficEventID)

get(trafficEvent.getClass())
String (layer name)

put("layerID", layerName)
put("features", trafficEventFeatures)

[* for each
device class]

Builds a lookup table of traffic
event / RPI ID pairs for each
response device in the system.
This is used to display the extra
usage information in the
DMS / HAR popups, even if
the device is only in the
response plan and the response
plan item is not executed
(i.e., on the device's arbitration
queue).

MapFeatureJSON
SupporterImpl

This is a mapping from requested feature classes
to a list of MapFeatures for that class.

featuresByClass:
HashMap

jsonFeaturesOnLayer:
JSONArray

featureClassLayerMap :
HashMap

jsonLayers:
JSONArray

jsonLayer :
JSONObject

getResponseDeviceIDToTEAndRPIMap()

create

create

getFeatures(supporter, deviceClasses, geoLocation, radius)

create

HashMap

get(deviceClass)

ArrayList<Feature>

getJSONForMap(mapFeatureJSONSupporterImpl)
JSONObject

create

getGeoLocation()

create

put("layers", jsonLayers)
put("trafficEventID", teID.toString())

put("minLat", envelope.getMinY())

put("minLon", envelope.getMinX())

sendJSONObject(
resp, mapJSON)

NOTE - currently there
is only one traffic event
in the close device map,
which is why the traffic
event is handled
outside of the above loop.

getJSONForMap(mapFeatureJSONSupporterImpl)

add(trafficEventJSONObject)

create

put("features", jsonFeaturesOnLayer)

put("maxLat", envelope.getMaxY())

put("maxLon", envelope.getMaxX())

null

create

JSONObject

mapJSON :
JSONObject

put("mapID", "closeDevicesMap")

add(jsonLayer)

put("radiusMiles", radius)

MapReqHdlr

Figure 5-21 MapReqHdlr:getCloseDevicesMapDataJSON (Sequence Diagram)

CHART R7 Detailed Design 5-32 03/02/2011

5.6 Package CHART2.TSSManagementModule

5.6.1 Class Diagrams

5.6.1.1 TSSManagementModulePkg

This package manages all server activies related to Traffic Sensor Systems. Currently only

Remote Traffic Microwave Sensor (RTMS) type devices are supported however it is

designed to handle other TSS devices types. Devices are periodically polled (responding to

a device-created event is not supported) and results are reported on CORBA event channels.

CHART R7 Detailed Design 5-33 03/02/2011

Revised for R7

Added the following method::

copyMapDisplayOptionsToCurrentConfig

TSSConfigurationCopyResults

Raw Data Log

LogFile

Used to log

debugging

information only.

LogFile

TSSManagementDB

TSSStatus

«typedef»

TSSConfiguration

«typedef»

RTMSProtocolHdlrRTMSDeviceStatus

RTMSFactoryImpl

PolledTSSImpl

TSSManagementModulePkg

RTMSFactory

«interface»

TransportationSensorSystem

«interface»

Stores list of

RTMS objects

java.util.Vector

ServiceApplicationModule

«interface»

TSSPollingTask

java.util.TimerTask

java.util.Timer

PushEventSupplier

ServiceApplication

«interface»

TSSEvent

«typedef»

PortLocator

TSSManagementProperties

TSSDBData

CommFailureDB

TSSPollResults RTMSImpl

RTMS

«interface»

2 event channels, one

for status change,

one for traffic parameter data

TSSCurrentStatusPushTask

java.util.Timer

*

1

*

1

1
1

1

11

1

1

*

1

1

11

returns status info

using

1

1

1

1

pushes event data in

1

1

1

1

1

1

1

1

1

1

1

1

1

1

pushes

event

data in

1

1

1

1

1

1

1

1

returns persisted

TSS data in

1

1

1

1

1

1

11

1 1

1

1

1

*

*

1

1

New for R7

Revised for R7

Added the setMapDisplayOptions API

1

AlertFactoryWrapper

1
1

1

*

1

1
*

1

run()

getStatus():TSSStatus

getConfiguration(token:byte[]):TSSConfiguration

setConfiguration(token:byte[], config:TSSConfiguration):void

remove(token:byte[]):void

setLocation(token:AccessToken, location:ObjectLocation):void

setMapDisplayOptions(token:byte[], config:TSSConfiguration):void

schedule() : void

cancel() : void

byte[] m_id;

ZoneGroupTrafficParms[] m_zoneGrpTrafficParms

int m_avgSpeed

SpeedRange m_speedRange

CommunicationMode m_mode;

OperationalStatus m_opStatus;

long m_trafficParameterTimestamp;

byte[] m_id

String m_name

ObjectLocation m_location

Identifier m_ownerOrg

int m_dropAddress

short m_bearing

ZoneGroup[] m_zoneGroups

int m_pollIntervalSecs

CommPortConfig m_commPortCfg

PortLocationData m_portLocData[]

IPPortLocationData m_ipportLocData[]

boolean m_debugComms

TSSImpl(TSSConfiguration, TSSStatus, TSSManagementDB,

 TransportationSensorSystemFactoryl,

 PushEventSupplier, PortLocator)

abstract poll(DataPort):TSSPollResults

pollDevice():void

copyMapDisplayOptionsToCurrentConfig(

 config:TSSConfiguration):TSSConfigurationCopyResults

getStatus(boolean resetAvg):void

setLocation(token:byte[], deviceLocation:ObjectLocation):void

computeZoneGroupTrafficParams(results : TSSPollResults) :

 ZoneGroupTrafficParams[]

toString()

TrafficParameters[] m_trafficParms

byte m_healthStatus

byte m_msgNum

addCommFailureLogEntry(CommFailureData):void

DBConnectionManager dbConnMgr

TrafficParameters[] m_trafficParms

OperationalStatus m_opStatus

addError(errMsg:String):void

addWarning(warnMsg:String):void

addSuccess(successMsg:String):void

getErrors():String[]

getWarnings():String[]

getSuccesses():String[]

getStatus():RTMSDeviceStatus

byte m_sensorID;

LogFile m_debugLog;

RTMSFactoryImpl(ServiceApplication,

 TSSManagementProperties,

 TSSManagementDB,

 LogFile, PushEventSupplier,

 PushEventSupplier)

remove(byte[] token, byte[] idl):void

getList(int TSSType):TSSDBData[]

add(byte[] id, int TSSType, TSSConfiguration):void

remove(byte[] id):void

updateConfig(byte[] id, TSSConfiguration):void

updateCommMode(byte[] id, int mode):void

updateOpStatus(byte[] id, int opStatus):void

DBConnectionManager m_dbConn

TSSConfiguration m_config

CommunicationMode m_mode

OperationalStatus m_opStatus

start(args : string[]) : boolean

shutdown() : boolean

getORB() : ORB

getPOA(string poaName) : POA

getTradingRegister() : CosTrading.Register

getTradingLookup() : CosTrading.Lookup

getEventChannelFactory() : EventChannelFactory

getDBConnectionManager() : DBConnectionManager

getOperationsLog() : OperationsLog

getProperties() : java.util.Properties

getDefaultProperties() : java.util.Properties

registerObject(obj, id, name, type, publish) : void

registerEventChannel(EventChannel, name) : void

withdrawObject(id) : void

getIDGenerator() : IdentifierGenerator

getRawDataFileName():String

getDebugFileDir():String

getAutoStatusPushSecs():int

initialize(ServiceApplication app):boolean

getVersion() : ComponentVersion

traderGroupUpdated() : void

shutdown(ServiceApplication app):boolean

ServiceApplication m_svcApp;

DefaultServiceApplicationProperties m_props;

run()

Figure 5-22 TSSManagementModulePkg (Class Diagram)

CHART R7 Detailed Design 5-34 03/02/2011

5.6.1.1.1 AlertFactoryWrapper (Class)

This singleton class provides a wrapper for the Alert Factory that provides automatic

location of an Alert Factory and automatic re-discovery should the Alert Factory reference

return an error. This class also allows for built-in fault tolerance by automatically failing

over to a "working" Alert Factory without the user of this class being aware that this being

done. In addition, this class defers the discovery of the Alert Factory until its first use, thus

eliminating a start-up dependency for modules that use the Alert Factory.

This class delegates all of its method calls to the system AlertFactory using its currently

known good reference to an AlertFactory. If the current reference returns a CORBA failure

in the delegated call, this class automatically switches to another reference. When there are

no good references (as is true the first time the object is used), this class issues a trader

query to (re)discover the published Alert Factory objects in the system. During a method

call, the trader will be queried at most one time and under normal circumstances, not at all.

5.6.1.1.2 CommFailureDB (Class)

This class is a utility used to log an entry in the Comm Failure log table in the database.

This table is used to log details about any comm failure that occurs in the system.

5.6.1.1.3 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or

recurring execution.

5.6.1.1.4 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one

or more times.

5.6.1.1.5 java.util.Vector (Class)

A Vector is a growable array of objects.

5.6.1.1.6 LogFile (Class)

This class creates a flat file for writing system trace log messages and purges them at user

specified interval. The log files created by this class are used for system debugging and

maintenance only and are not to be confused with the system operations log which is

modeled by the OperationsLog class.

5.6.1.1.7 PolledTSSImpl (Class)

This object implements the Transportation Sensor System interface as defined in IDL. This

implementation provides the base functionality required for Transporation Sensor Systems

that are polled periodically to retrieve traffic parameters. The only requirement for derived

classes is to provide an implmentation of the abstract poll method, which communicates

CHART R7 Detailed Design 5-35 03/02/2011

over a previously connected Port to obtain the traffic parameters from a TSS.

This implementation periodically polls the field device using the derived class

implementation of the poll method. This implementation provides services such as raw

data logging, averaging/summation of data into configured zone groups, asynchronous

notification of configuration changes, and persistence/depersistence.

A DeviceFailure alert is created each time the device transitions into

HARDWARE_FAILURE. Devices that cycle in and out of HARDWARE_FAILURE will

send multiple DeviceFailure alerts so it is up to the AlertModule to prevent duplicate open

DeviceFailure alerts for the same device.

5.6.1.1.8 PortLocator (Class)

The PortLocator is a utility class that helps one to connect to the port used by the device.

The actual implementation of the operations is done by the derived classes depending on

what protocol is used for communication.

5.6.1.1.9 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.

The user of this class can pass a reference to the event channel factory to this object. The

constructor will create a channel in the factory. The push method is used to push data on

the event channel. The push method is able to detect if the event channel or its associated

objects have crashed. When this occurs, a flag is set, causing the push method to attempt to

reconnect the next time push is called. To avoid a supplier with a heavy supply load from

causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.

This interval specifies the quickest reconnect interval that can be used. The push method

uses this interval and the current time to determine if a reconnect should be attempted, thus

reconnects can be throttled independently of a supplier's push rate.

5.6.1.1.10 RTMS (Class)

The Remote Traffic Microwave Sensor (RTMS) is a detector manufactured by EIS, Inc.

capable of providing lane level volume, speed, and occupancy data for up to 8 lanes of a

roadway at a single location. This interface serves to identify TransportationSensorSystem

objects as being of the type RTMS. It also provides a place holder for future operations that

may not apply to TSS objects in general and are instead RTMS specific.

5.6.1.1.11 RTMSDeviceStatus (Class)

This class is used to pass raw data retrieved from the RTMS to the caller of the

RTMSProtocolHdlr getStatus() method.

m_trafficParameters - the traffic parameters sensed by the device, such as volume, speed,

and occupancy.

m_healthStatus - The health status byte reported from the RTMS. A value other than 10,

CHART R7 Detailed Design 5-36 03/02/2011

20, 30, 40, 50, 60, or 70 indicates a hardware problem.

m_msgNum - The message number reported by the RTMS. This number is incremented

sequentially when the RTMS dumps averaged data to a retrieval area at the end of a

message period. It can be used to determine if the device is being polled too frequently or

infrequently.

5.6.1.1.12 RTMSFactory (Class)

Objects which implement RTMSFactory are capable of adding an RTMS to the system.

5.6.1.1.13 RTMSFactoryImpl (Class)

This class implements the RTMSFactory interface as defined in the IDL. It holds all

RTMSImpl objects that have been created within an instance of the

RTMSManagementModule and allows for the addition and removal of RTMS objects. It

also allows one to query all RTMS objects currently served from the factory.

This factory contains a timer that periodically fires, causing the RTMSFactoryImpl to

collect the current status of each RTMSImpl and push the collective status in a single

CORBA event.

5.6.1.1.14 RTMSImpl (Class)

This class is a derivation of the PolledTSSImpl that provides functionality for obtaining the

current traffic parameters from an RTMS device. It makes use of an

RTMSProtocolHandler to perform the device specific protocol to obtain the traffic

parameters. It moves the data from the device specific format to the generic

TSSPollResults object to allow the PolledTSSImpl to combine/average data based on zone

group configuration, perform raw data logging, and other services that are common to

Transportation Sensor System objects.

5.6.1.1.15 RTMSProtocolHdlr (Class)

This class is a utility that encapsulates the communication protocol of the RTMS device. It

provides a high level method to get the status as an object. It formats a command and sends

it to the device and receives and interprets the response from the device, passing the data

back to the caller in the form of an RTMSDeviceStatus object.

5.6.1.1.16 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a

ChartII service application. These services include providing access to basic CORBA

objects that are needed by service applications, such as the ORB, POA, Trader, and Event

Service.

CHART R7 Detailed Design 5-37 03/02/2011

5.6.1.1.17 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing

classes are notified when their host service is initialized and when it is shutdown. The

implementing class can use these notifications along with the services provided by the

invoking ServiceApplication to perform actions such as object creation and publication.

5.6.1.1.18 TransportationSensorSystem (Class)

A Transportation Sensor System (TSS) is a generic term used to describe a class of

technology used for detection within the transportation industry. Examples of TSS devices

range from the advanced devices, such as RTMS, to basic devices, such as single loop

detectors.

This software interface is implemented by objects that provide access to the traffic

parameters sensed by a Transportation Sensor System. Transportation Sensor Systems are

capable of providing detection for one or more detection zones. A single loop detector

would have one detection zone, while an RTMS would have 8 detection zones.

5.6.1.1.19 TSSConfiguration (Class)

This class holds configuration data for a transportation sensor system (TSS) as follows:

m_id - The unique identifier for this TSS. This field is ignored when the object is passed to

the TSS to change its configuration.

m_name - The name used to identify the TSS.

m_location - A descriptive location of the TSS.

m_dropAddress - The drop address for the device.

m_bearing - The bearing in degrees for displaying the TSS on the map. Valid values are

from -1 to 359 (-1 = bearing not defined, 0 = East, 90 = North, 180 = West, and 270 =

South). The default value is -1.

m_zoneGroups - Logical groupings of detection zones, used to provide a single set of

traffic parameters for one or more detection zones.

m_pollIntervalSecs - The interval on which the TSS should be polled for its current traffic

parameters (in seconds).

m_commPortCfg - Communication configuration values.

m_portLocData - Configuration information that determines which port manager(s) should

be used to establish a connection with the SensorSystem.

m_debugComms - Flag used to enable/disable the logging of communications data for this

TSS. When enabled, command and response packets exchanged with the device are logged

to a debugging log file.

CHART R7 Detailed Design 5-38 03/02/2011

5.6.1.1.20 TSSConfigurationCopyResults (Class)

This class is used to record successful configuration updates, errors, and warnings that

happen while copying map display options from one TSSConfiguraiton object to another.

5.6.1.1.21 TSSCurrentStatusPushTask (Class)

This class is a timer task that is executed on a regular interval. When this task is run, it

calls into the RTMSFactoryImpl object to have it collect the status for all RTMSImpl

objects and to push a CurrentStatus event with the collected data.

5.6.1.1.22 TSSDBData (Class)

This class holds data that is retrieved from the database during start-up for a Transportation

Sensor System object that existed in the system during a prior run of the software.

5.6.1.1.23 TSSEvent (Class)

This class is a CORBA union that contains varying data depending on the current value of

the discriminator.

If the discriminator is ConfigChanged, this union contains a TSSConfig object.

If the discriminator is ObjectAdded, this union contains an ObjectAddedEventInfo object.

If the discriminator is ObjectRemoved, this union contains a byte[] containing the unique

identifier for the Traffic Sensor System that was removed.

If the discriminator is CurrentStatus the union contains an array of one or more TSSStatus

objects.

If the discriminator is ModeChanged, the union contains a ModeChangedEventInfo.

If the discriminator is OpStatusChanged, the union contains an OpStatusChangedEventInfo

object.

5.6.1.1.24 TSSManagementDB (Class)

This class is a utility that provides methods for adding, removing, and updating database

data pertaining to Transportation Sensor Systems. Because this class is designed to be

generic and work for RTMS as well as other TSS derived objects, the add method requires

a model id to be passed. This allows data for a specific model to be retrieved by model

specific factories during system initialization.

5.6.1.1.25 TSSManagementModulePkg (Class)

This class is a ServiceApplicationModule used to serve an RTMSFactory object. The

RTMSFactory serves zero or more RTMS objects. By providing an implementation of the

ServiceApplicationModule interface, this class can be included in the CHART2 service

CHART R7 Detailed Design 5-39 03/02/2011

application framework, which provides common services needed to serve CORBA objects

within the CHART 2 system.

5.6.1.1.26 TSSManagementProperties (Class)

This class provides a wrapper to the application's properties file that provides easy access to

the properties specific to the TSSManagementModule. These properties include the name

of the file where raw traffic parameter data is to be logged, the directory where debug log

files are to be kept, and the interval at which the status of all TSS objects is to be collected

and pushed in a CORBA event.

5.6.1.1.27 TSSPollingTask (Class)

This class is a TimerTask that is used by an RTMS to schedule its asynchronous polling

with a Timer object.

5.6.1.1.28 TSSPollResults (Class)

This class is a data holder used to pass the results of device polling from the PolledTSSImpl

derived class back to the base class for processing. The traffic parameter data passed is lane

(detection zone) level. The operational status is the status as determined by the derived

class.

m_trafficParms - An array of traffic parameters for the current poll cycle, with one array

entry for each detection zone of the device.

m_opStatus - The operational status as determined by the derived class.

5.6.1.1.29 TSSStatus (Class)

This class holds current status information for a TSS as follows:

m_id - The ID of the TSS for which this status applies.

m_zoneGrpTrafficParms - The traffic parameters for each ZoneGroup of the Transporation

Sensor System as specified in the Sensor system's TSSConfiguration object.

m_mode - The communication mode of the TSS.

m_opStatus - The operational status for the TSS.

m_trafficParameterTimestamp - A timestamp that records when the traffic parameter data

was collected from the device.

m_avgSpeed - average speed at the detector leve.

m_speedRange - speed range at the detector level (avg speed).

CHART R7 Detailed Design 5-40 03/02/2011

5.6.2 Sequence Diagrams

5.6.2.1 PolledTSSImpl:setMapDisplayOptions

This diagram shows the processing performed when a client process calls the

TSS.setMapDisplayOptions method. First a check is made to verify that the caller has the

configureTSS functional right. If not, an AccessDenied exception is thrown. If the user

does have rights, the copyMapDisplayOptionsToCurrentConfig() helper method is called

passing the new TSSConfiguration that contains the desired map display options. This

method will take a synchronization lock on the current configuraiton, and then will copy the

new TSS bearing to the configuration. It will then loop over all zone groups in the new

configuration and set the display type and display order for each. For each value that is

updated in the current TSSConfiguration the method will log a success to a

MapDIsplayOPtionsCopyResults object. For each member that cannot be set it will record

a warning or error as appropriate. If an error occurs, this method will leave the original

configuration unchanged. The MapDisplayOptionsCopyResults object is then returned to

the caller. The caller checks for errors, if there are any a CHART2Exception is thrown with

the error information. If there are none, a list of successfully copied members is obtained

from the copy results object. If at least one member was copied successfully, the database

class updateConfig() method will be called to persist the new configuration values, a list of

changed elements will be logged to the operations log and a ConfigChanged CORBA event

will be pushed. Regardless of successes, a check is next made to see if there were any

warnings. If so, they are returned to the caller.

TSSConfigurationCopyResults

getErrors

[Errors]
CHART2Exception

getSuccesses()

[not authorized]
AccessDenied

[warnings if there are any]

getWarnings()

Within a synchronization block, this method
will copy the TSS bearing, and the displayType
and displayOrder from each zone group in the
specified TSSConfiguration into the current m_config
TSSConfiguration member for this TSS. The copy operation
will return a TSSConfigurationCopyResult that contains
information about the copied data elements and any errors
or warnings.

copyMapDisplayOptionsToCurrentConfig()
User must have
the configureTSS functional
right for the owning org
of this TSS

Administrator

PolledTSSImpl

OperationsLog
PushEventSupplier

(status channel)
TSSManagementDB

[at least one config value succeeded]
updateConfig ()

[at least one config value succeeded]
logList (configuration changed by user, enumerating items changed)

[at least one config value changed]
push (ConfigChanged)

setMapDisplayOptions

Figure 5-23 PolledTSSImpl:setMapDisplayOptions (Sequence Diagram)

CHART R7 Detailed Design 5-41 03/02/2011

5.7 Mapping Device Editor

5.7.1 Sequence Diagrams

Device Editor

Beginning R7, the bearing will
no longer be set through
the device editor.
The TSS bearing and Zones
will be configured in
CHART GUI.

Device Editor(Operator)
Intranet & Internet & iMap

Maps

Display TSS on the
Maps

Configure Bearing

Before
CHART

R7

CHART GUI

After
CHART

R7

Configure Bearing
Zone Groups

Display TSS on the
Maps

Figure 5-24 DataSynchronization: HumanMachine

Beginning CHART R7 (Mapping R6), the Integrated Map in the CHART application will

handling the mapping of CHART Devices (DMS, HAR, SHAZAM, CAMERA, DETECTOR);

Device viewing, adding, updating and removing will no longer be available in the CHART

Mapping Device Editor.

CHART R7 Detailed Design 5-42 03/02/2011

5.8 CHART Intranet & Internet Mapping GUI

There are no changes have been made in CHART Intranet and Internet Mapping GUI to

accommodate this feature. The change for this feature is described in the device editor.

5.9 CHART Data Exporter Synchronization (CHART Intranet Map)

5.9.1 Class Diagrams

CHARTMap.Handlers.TSSInventoryHandler

CHARTMap. Handlers.CHARTClosureInventoryHandler

This Diagram shows the CHARTInventoryHandler classes
 Codes are written in vb.net

CHARTMap. Handlers.CHARTInventoryHandler

CHARTMap.Handlers.CameraInventoryHandler

CHARTMap. Handlers.CHARTEventInventoryHandler

CHARTMap. Handlers.DMSInventoryHandler

<<datatype>>
ESRI.MapObject2.Core.MapLayer

«datatype»

<<datatype>>
CHARTMap.Lib.WebSiteConfig

CHARTMap. Handlers.HARInventoryHandler

CHARTMap. Handlers.SHAZAMInventoryHandler

<<datatype>>
DataRow

<<datatype>>
ESRI.MapObject2.Core.DataConnection

«datatype»

<<enumeration>>
eMode

«enumeration»

+Compare(in oDataRowNew :DataRow , in oDataRowOld :DataRow) : Boolean
#Save(in oDataRow : DataRow , in eMode : eMode, in m_oPtLayer : ESRI.MapObjects2.Core.MapLayer) : Boolean
-GetPermitByTrackingNum(in EORSTrackingNum : String) : String

+UpdateByMode(in eMode : eMode, in oDataRow : DataRow, in m_oPtLayer : ESRI.MapObjects2.Core.MapLayer,
in optional tIdentifier : String "" , in optional tID : String "") : Boolean
+Compare(in oDataRowNew :DataRow , in oDataRowOld :DataRow) : Boolean
#Save(in oDataRow : DataRow , in eMode: eMode, in m_oPtLayer : ESRI.MapObjects2.Core.MapLayer) : Boolean
#Remove(in tIdentifier : String , in tID : String , in m_oPtLayer : ESRI.MapObjects2.Core.MapLayer) : Boolean

+eMode :eMode

+Compare(in oDataRowNew :DataRow , in oDataRowOld :DataRow) : Boolean
#Save(in oDataRow : DataRow , in eMode: eMode ,
in m_oPtLayer : ESRI.MapObjects2.Core.MapLayer) : Boolean

+Compare(in oDataRowNew :DataRow , in oDataRowOld :DataRow) : Boolean
#Save(in oDataRow : DataRow , in eMode: eMode, in m_oPtLayer : ESRI.MapObjects2.Core.MapLayer) : Boolean

+Compare(in oDataRowNew :DataRow , in oDataRowOld :DataRow) : Boolean
#Save(in oDataRow : DataRow , in eMode: eMode ,
in m_oPtLayer : ESRI.MapObjects2.Core.MapLayer) : Boolean
+UpdateTSSZones(): Integer

+Compare(in oDataRowNew :DataRow , in oDataRowOld :DataRow) : Boolean
#Save(in oDataRow : DataRow , in eMode: eMode ,
in m_oPtLayer : ESRI.MapObjects2.Core.MapLayer) : Boolean

+Compare(in oDataRowNew :DataRow , in oDataRowOld :DataRow) : Boolean
#Save(in oDataRow : DataRow , in eMode: eMode , in m_oPtLayer : ESRI.MapObjects2.Core.MapLayer) : Boolean

+Compare(in oDataRowNew :DataRow , in oDataRowOld :DataRow) : Boolean
#Save(in oDataRow : DataRow , in eMode: eMode, in m_oPtLayer : ESRI.MapObjects2.Core.MapLayer) : Boolean

+FindGeoDataset(string: GISTableName) :
ESRI.MapObjects2.Core.GeoDataset
+SearchByDistance(object shape, double distance, string expression) :
ESRI.MapObjects2.Core.Recordset

SdeConnection : ESRI.MapObjects2.Core.DataConnection
m_Layer : ESRI.MapObjects2.Core.MapLayer

+Add = Add
+Update = Update
+Remove = Remove

Figure 5-25 Data Exporter Synchronization (Class Diagram)

CHART R7 Detailed Design 5-43 03/02/2011

5.9.1.1 CHARTInventoryHandler Classes

5.9.1.2 CHARTMap.Handlers.CHARTInventoryHandler (Class)

This is a base class for inventory updates. This class contains methods to determine the

update status (add, update, or remove). In addition, this class contains a method to remove

an object from the spatial table. Derived classes must implement Compare() and Save().

5.9.1.3 CHARTMap.Handlers.DMSInventoryHandler (Class)

This class extends the CHARTInventoryHandler class and implements the Compare() and

Save() methods. This class is used to compare DMS records between the spatial and non-

spatial table. This class is also used to update or add new record(s) to the DMS spatial table.

5.9.1.4 CHARTMap.Handlers.HARInventoryHandler (Class)

This class extends the CHARTInventoryHandler class and implements the Compare() and

Save() methods. This class is used to compare HAR records between the spatial and non-

spatial table. This class is also used to update or add new record(s) to the HAR spatial table.

5.9.1.5 CHARTMap.Handlers.SHAZAMInventoryHandler (Class)

This class extends the CHARTInventoryHandler class and implements the Compare() and

Save() methods. This class is used to compare SHAZAM records between the spatial and

non-spatial table. This class is also used to update or add new record(s) to the SHAZAM

spatial table.

5.9.1.6 CHARTMap.Handlers.CHARTEventInventoryHandler (Class)

This class extends the CHARTInventoryHandler class and implements the Compare() and

Save() methods. This class is used to compare CHART Event records between the spatial

and non-spatial table. This class is also used to update or add new record(s) to the CHART

Event spatial table.

5.9.1.7 CHARTMap.Handlers.CHARTClosureInventoryHandler (Class)

This class extends the CHARTInventoryHandler class and implements the Compare() and

Save() methods. This class is used to compare CHART Closure records between the spatial

and non-spatial table. This class is also used to update or add new record(s) to the CHART

Closure spatial table.

5.9.1.8 CHARTMap.Handlers.CameraInventoryHandler (Class)

This class extends the CHARTInventoryHandler class and implements the Compare() and

Save() methods. This class is used to compare Camera records between the spatial and non-

spatial table. This class is also used to update or add new record(s) to the Camera spatial

table.

CHART R7 Detailed Design 5-44 03/02/2011

5.9.1.9 CHARTMap.Handlers.TssInventoryHandler (Class)

This class extends the CHARTInventoryHandler class and implements the Compare() and

Save() methods. This class is used to compare detector records between the spatial and non-

spatial table. This class is also used to update or add new record(s) to the detector spatial

table.

5.9.2 Sequence Diagram

5.9.2.1 CHART Data Exporter Synchronization

This diagram shows the processing that occurs when a request to synchronize CHART Events or

Devices. The process starts by parsing the incoming query string and determines which object to

be synchronized. The process also writes each process events into the log file in the local

machine. An associated object is created once the process determines which object to be

synchronized. Then it calls the UpdateInventory method to start comparing each column of the

spatial and the non-spatial tables based on the distinct identifier. The existing spatial record is

updated by calling the UpdateByMode method if the process finds a difference between the two

tables. As an exception, a record will be removed by calling the UpdateByMode method if the

non-spatial table contains 0 or Null value for both Latitude and Longitude columns which

indicates the Events or Device has been un-mapped from the integrated map. If a record existed

in the non-spatial table but it does not exit in the spatial table, the process will then add a new

record by calling the UpdateByMode method to the spatial table unless the value of the Latitude

and Longitude columns are either 0 or Null. The process will remove the record from the spatial

table if the record by calling the UpdateByMode method only existed in the spatial table.

CHART R7 Detailed Design 5-45 03/02/2011

Figure 5-26 Data Exporter Synchronization (Sequence Diagram)

CHART R7 Detailed Design 6-1 03/02/2010

6 Use Cases – NTCIP Camera

The use case diagrams depict new functionality for the CHART NTCIP Camera functionality

and also identify existing features that will be enhanced. The use case diagrams for this feature

exist in the Tau design tool in the Release7 area. The sections below indicate the title of the use

case diagrams that apply to this feature.

6.1 R7 Camera Use Cases

Choose Camera
For Monitor

Operator

Display Video

MODIFIED FOR R7
added:
View NTCIP Camera
Control NTCIP Camera

Choose Monitor
For Camera

Control Flash
Video Streams

View Cameras

Block Flash Video
To Public

Manage Camera

Administrator

Enable Flash Video
To Public

Display Flash
Streaming

Status

See ManageCamera
 Use Case Diagram

Configure
Video Sources

Display Multiple
Video Sending

Devices

MODIFIED FOR R7

added:
Configure NTCIP Camera
Add/Copy NTCIP Camera
Update NTCIP Camera
Remove NTCIP Camera

System

Add Video Source

Update Video
Source

Remove Video
Source

Copy Video
Source

Display Camera
Image

Configure Multiple
Video Sending Devices

Configure Switches

Configure Flash
Streaming

Control

ConfigureEncoders

includesincludes

includesincludes

includesincludes

includesincludes

includesincludes

extendsextends

includesincludes
includesincludes

includesincludes

includesincludes

includesincludes

includesincludes

includesincludes

includesincludes

includesincludes

Figure 6-1. R7CameraUses (Use Case Diagram)

CHART R7 Detailed Design 6-2 03/02/2010

6.1.1 Add Video Source (Use Case)

The system shall allow the user to add video sources to the system. Video Sources include

generic unspecified video sources, "No Video Available" sources, fixed cameras, and

controllable cameras including COHU, Vicon, and NTCIP cameras. The system allows an

administrator to configure multiple video sending devices for the video source.

6.1.2 Administrator (Actor)

An administrator is a CHART user that has functional rights assigned to allow them to

perform administrative tasks, such as system configuration and maintenance.

6.1.3 Block Flash Video To Public (Use Case)

An operator shall be able to block a camera's flash stream to the public.

6.1.4 Choose Camera For Monitor (Use Case)

An operator shall be able to choose a camera to display on a monitor from the monitor list.

The monitors shown in the list should have the correct route displayed. If a camera

contains a local and routed connecting device, local will be shown.

6.1.5 Choose Monitor For Camera (Use Case)

An operator shall be able to choose a monitor for display from the camera list. The

monitors shown in the list should have the correct route displayed. If the monitor contains a

local and routed connecting device, local will be shown.

6.1.6 Configure Video Sources (Use Case)

The system allows an administrator with the Configure Camera right to configre video

sources in the CHART system. Video Sources include generic unspecified video sources,

"No Video Available" sources, fixed cameras, and controllable cameras including COHU,

Vicon, and NTCIP cameras. The system allows an administrator to configure multiple

video sending devices for the video source.

6.1.7 Configure Flash Streaming Control (Use Case)

The system shall allow an administrator to specify a flash video stream control for the video

source. (This is the system which manages the "red button", also known as the flash "kill

switch".)

6.1.8 Configure Multiple Video Sending Devices (Use Case)

An administrator shall be able to configure one or more video sending devices and flash

video stream controls for each video source in the system..

CHART R7 Detailed Design 6-3 03/02/2010

6.1.9 Configure Switches (Use Case)

The system shall allow an administrator to configure one or more switches as a video

sending device for a camera.

6.1.10 ConfigureEncoders (Use Case)

The system shall allow an administrator to configure one or more encoders as a video

sending device for a camera.

6.1.11 Control Flash Video Streams (Use Case)

An operator shall be able to control a camera's flash stream to the public.

6.1.12 Copy Video Source (Use Case)

The system shall allow a user to copy video sources when creating new video sources.

Video Sources include generic unspecified video sources, "No Video Available" sources,

fixed cameras, and controllable cameras including COHU, Vicon, and NTCIP cameras.

The system shall allow an administrator to copy multiple (one or more) video sending

devices while copying a video source..

6.1.13 Display Camera Image (Use Case)

When the system displays a camera image on a monitor, the correct sending device will be

used based on the receiving device's video fabric.

6.1.14 Display Flash Streaming Status (Use Case)

An operator shall be able to view the streaming status of a camera.

6.1.15 Display Multiple Video Sending Devices (Use Case)

The operator shall be able to view multiple sending device configurations for a video

camera.

6.1.16 Display Video (Use Case)

An operator shall be able to display video when a camera has more than one sending device

specified.

6.1.17 Enable Flash Video to Public (Use Case)

An operator shall be able to enable a camera's flash stream to the public.

CHART R7 Detailed Design 6-4 03/02/2010

6.1.18 Manage Camera (Use Case)

An operator with the correct functional rights may perform basic operations on a camera.

Please refer to the Manage Camera Use Case diagram for more detailed information.

6.1.19 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password

combination and granted roles for system access.

6.1.20 Remove Video Source (Use Case)

The system shall allow a user to remove video sources from the system.

6.1.21 System (Actor)

The System actor represents any software component of the CHART system. It is used to

model uses of the system which are either initiated by the system on an interval basis, or are

an indirect by-product of another use case that another actor has initiated.

6.1.22 Update Video Source (Use Case)

The system shall allow a user to update video source attributes. Video Sources include

generic unspecified video sources, "No Video Available" sources, fixed cameras, and

controllable cameras including COHU, Vicon, and NTCIP cameras. The system shall

allow an administrator to configure multiple (one or more) video sending devices while

updating a video source.

6.1.23 View Cameras (Use Case)

An operator shall be able to view the details for a camera. Details include the flash

streaming configuration/status and multiple video sending devices.

CHART R7 Detailed Design 6-5 03/02/2010

6.2 DisplayCamera (Use Case Diagram)

An operator may display any camera on any monitor subject to certain restrictions. First

the operator must have the proper functional rights to display a camera on a monitor. Next,

the operator must have the proper functional rights to display a particular camera. Finally,

that camera must be online. An operator may display a local camera on a local monitor, a

remote camera on a local monitor, a local camera on a remote monitor, or a remote camera

on a remote monitor. A local camera is a camera homed to the same server as the operator's

workstation. A local monitor refers to a monitor in the requesting operator’s monitor

group. An operator with the correct functional rights may also start and stop a camera tour

running on a local or remote monitor. A display request may also entail displaying a

camera on a monitor across switch fabrics and using a router to manage the limited number

of connections between the switch fabrics.

«uses»

«uses»«uses»

Terminate Camera
Control

StartVideoTour

Operator

Command Decoder

Camera and Monitor
On Same Switch Fabric

Build a
Route

Command CoreTec
MPEG-4 Decoder

Command iMPath
MPEG-2 Decoder

Move To
Preset

Command V1500
Switch

Camera and Monitor
On Different

Switch Fabric

Override Camera
Image Display

Display Camera

StopVideoTour

Display Camera
On Monitor

R7
Starting in this release
NTCIP Cameras are supported.
(no code changes anticipated)

«extend»

«extend»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«extend»

«include»

«include»

«include»

Figure 6-2 Display Camera (Use Case Diagram)

6.2.1 Build a Route (Use Case)

The Router tracks all routes between switch fabrics. The limited number of connections is

managed. This means that all requests are evaluated based on a set of business rules, and

fulfilled if possible. It is possible, based on the business rules, that a current image, using

one of the target routes, will need to be overridden. The Router will command either the

V1500 Switch or the Decoder as it builds the legs of the route.

6.2.2 Camera and Monitor On Different Switch Fabric (Use Case)

After a display request has been evaluated and it has been determined that the camera and

monitor are on different switch fabrics, a route between the camera and monitor must be

CHART R7 Detailed Design 6-6 03/02/2010

computed and evaluated.

6.2.3 Camera and Monitor On Same Switch Fabric (Use Case)

After a display request has been evaluated and it has been determined that both the camera

and monitor are on the same switch fabric, the receiving device can be commanded directly.

For IP based cameras and monitors, a Decoder is commanded. For V1500 based cameras

and monitors, a V1500 switch is commanded.

6.2.4 Command CoreTec MPEG-4 Decoder (Use Case)

In order to accomplish the task on displaying a camera on a monitor attached to a CoreTec

MPEG-4 decoder, the system will command an IP based CoreTec MPEG-4 decoder to

perform the video switching. The decoder will actually stop receiving the video stream for

the current camera and start receiving the video stream for the new camera. It will do so by

dropping the multicast group associated with the current camera's video stream and joining

the multicast group associated with the new camera's video stream.

6.2.5 Command Decoder (Use Case)

In order to accomplish the task on displaying a camera on a monitor, the system will

command an IP based decoder to perform the video switching. The decoder will actually

stop receiving the video stream for the current camera and start receiving the video stream

for the new camera. It will do so by dropping the multicast group associated with the

current camera's video stream and joining the multicast group associated with the new

camera's video stream.

6.2.6 Command iMPath MPEG-2 Decoder (Use Case)

In order to accomplish the task on displaying a camera on a monitor attached to an iMPath

MPEG-2 decoder, the system will command an IP based iMPath MPEG-2 decoder to

perform the video switching. The decoder will actually stop receiving the video stream for

the current camera and start receiving the video stream for the new camera. It will do so by

dropping the multicast group associated with the current camera's video stream and joining

the multicast group associated with the new camera's video stream.

6.2.7 Command V1500 Switch (Use Case)

A V1500 Switch is commanded whenever a source and a sink on a V1500 switch need to

be connected.

6.2.8 Display Camera (Use Case)

An operator with the correct functional rights may display a camera on a monitor. See the

Display Camera use case diagram for a more detailed explanation.

CHART R7 Detailed Design 6-7 03/02/2010

6.2.9 Display Camera On Monitor (Use Case)

An operator with the proper functional rights may display a camera on a monitor by

commanding the proper Decoder or V1500 Switch. If the camera currently displayed on

the target monitor is being controlled, and that monitor the only display within the

controlling operator's monitor group, the display request will be normally rejected. The

exception to this rule occurs if a camera is being taken offline, and the camera is being

controlled. In this case a NoVideoAvailable source is displayed on the monitor and camera

control is terminated.

6.2.10 Move To Preset (Use Case)

When the last image of a camera is removed from any monitor (as part of a new display

request), the camera will move to a default preset position if defined. A camera may also

move to a pre-defined preset as part of a display associated with a video tour.

6.2.11 Override Camera Image Display (Use Case)

The Override Camera Image use case deals with the situation where a high priority display

request comes into the system when there is no currently available route to fulfill the

request. In such a case one of routes currently in use will have to be taken for use by the

higher priority request. This means that a “No Video Available” source will be displayed

on the monitor(s) that have had their camera image overridden.

6.2.12 StartVideoTour (Use Case)

An operator with the proper functional rights may start a video tour on the selected monitor.

The video tour list is defined in the CHART II database. The video tour list consists of a

list of cameras to be displayed in succession for a configurable dwell time.

6.2.13 StopVideoTour (Use Case)

An operator with the proper functional rights may stop a video tour running on the selected

monitor. The operator need not be the operator who started the camera tour.

6.2.14 Terminate Camera Control (Use Case)

An operator with the proper functional rights may manually terminate a camera control

session that the operator is actively using. Note that an operator who has the proper

functional rights to establish the control session will always have the proper functional

rights to terminate that session. Also, a camera control session may be terminated if that

session is overridden by an appropriately privileged operator. Also, an active control

session may be terminated if a camera is taken offline or if the camera is no longer

displayed on a monitor within the controlling operator’s monitor group as a result of

displaying a NoVideoAvailable source. Note that part of this process will include

terminating the camera control GUI, although that is beyond the scope of this document.

CHART R7 Detailed Design 6-8 03/02/2010

6.3 MaintainCamera (Use Case Diagram)

This diagram shows use cases related to maintaining Cameras via the Maintenance GUI.

«extends»

«extends»

R7
Starting in this release
NTCIP Cameras are supported.
(no code changes anticipated)

Dev ice Maintainer

View Camera
List for Maint

View Camera
Details for Maint

Put Camera
Online

Take Camera
Offline

Poll Camera

Request
Camera
Control

Terminate Camera
Control

Control Camera

View Dev ice List For Maint

View Dev ice Details For Maint

Existing features,
just accessed from
a different web page.

New for Maint GUI, but will use
existing servlet code. Only
changes are to the display.

Figure 6-3 MaintainCamera (Use Case Diagram)

6.3.1 Control Camera (Use Case)

An operator with the proper functional rights may control a camera. In this case, control

refers to issuing commands to the camera to cause the camera to pan/tilt/zoom etc. Refer to

the send Camera Commands use case diagram for more details.

6.3.2 Poll Camera (Use Case)

A camera is polled by the system in order to establish the status of the camera control

communications path. The polling process consists of sending the camera a poll command

CHART R7 Detailed Design 6-9 03/02/2010

and receiving a response from the camera. This is done by the system for all cameras that

are online, regardless of whether the cameras are controlled or not. It is also done

immediately after camera control has been granted so that the camera control status is

current. In addition, polling takes place while a camera is actively controlled. When a

camera is actively controlled, the polling is typically much more frequent that when the

camera is not actively controlled.

6.3.3 Put Camera Online (Use Case)

An operator with the proper functional rights can put a camera online if the camera is

currently offline. Putting the camera online makes it available for display and control to

any operators having the proper functional rights.

6.3.4 Request Camera Control (Use Case)

An operator with the proper functional rights may request control of a camera. This means

that the operator may send pan/tilt/zoom (PTZ) and other commands to the camera. The

system evaluates the request, and will accept the request, prompt the operator to override an

existing camera control session, or reject the request. If the request is accepted or the user

chooses to override an existing control session, a GUI will be launched which can be used

to send commands to the camera. The GUI itself will not be addressed in this document.

6.3.5 Take Camera Offline (Use Case)

Operators with the proper functional rights may take a camera offline. A camera that has

been taken offline may not be displayed or controlled until it is put back online.

6.3.6 Terminate Camera Control (Use Case)

An operator with the proper functional rights may manually terminate a camera control

session that the operator is actively using. Note that an operator who has the proper

functional rights to establish the control session will always have the proper functional

rights to terminate that session. Also, a camera control session may be terminated if that

session is overridden by an appropriately privileged operator. Also, an active control

session may be terminated if a camera is taken offline or if the camera is no longer

displayed on a monitor within the controlling operator’s monitor group as a result of

displaying a NoVideoAvailable source. Note that part of this process will include

terminating the camera control GUI, although that is beyond the scope of this document.

6.3.7 View Camera Details for Maint (Use Case)

The details for Camera devices shall be available for viewing for the purpose of performing

maintenance, as specified in the View Device Details For Maint use case.

CHART R7 Detailed Design 6-10 03/02/2010

6.3.8 View Camera List for Maint (Use Case)

The system shall allow the user to view a list of Cameras that are candidates for device

maintenance as specified in the View Device List for Maint use case.

6.3.9 View Device Details For Maint (Use Case)

The system shall allow the details for a device to be viewed for the purpose of performing

maintenance. This shall be supported for DMS, HAR, SHAZAM, TSS, and Camera

devices. The details shall include the device type, name, and location left justified near the

top of the page. All other information on the page shall also be left justified. Any actions

that apply to the device in its current mode and based on the user's rights shall be available

toward the top of the page, under the device type/name/location. The list of actions

available for a device shall match the actions available for the device within the standard

GUI, except as follows: The list of actions available shall exclude the ability to copy the

device. The list of actions available shall exclude and the ability to remove the device.

Exceptions specific to a device type may also apply and are specified in the extending use

cases where applicable. The data displayed for a device shall match the data displayed for

the device if the user were to view details for the device for other purposes (non

maintenance activities) except as specified in extending use cases.

6.3.10 View Device List For Maint (Use Case)

The system shall allow the user to view a list of devices that are candidates for

maintenance. This shall include the ability to list DMS, HAR, SHAZAM, TSS, and

Camera devices (in separate lists). Each list will identify the type of devices that are shown

in the list. Each list can include all CHART devices of the selected type, or can be pre-

filtered. The pre-filtering can be done by device mode/status or using the GUI's folder

feature. When the folder feature is used, only devices that exist in folders that are tagged

with the user's operations center are shown. If no such devices exist then all CHART

devices of the specified type are shown (unfiltered list). The list of devices will show the

number of devices that appear in the list. If the device is filtered, the list will also show the

number of devices that would appear if the list is unfiltered and will show the filter(s) in

use. The user shall be able to remove all filtering from a list that is filtered. The list will

show each device with an icon to identify the device type and mode/status, the device

name, and the device location. Each list will provide access to a details page for each

device shown.

CHART R7 Detailed Design 6-11 03/02/2010

6.4 ManageCamera (Use Case Diagram)

An operator will interact with cameras in a variety of ways. Cameras may be taken online

or offline. Monitors may be taken online or offline as well. Cameras may be displayed.

Cameras may also be controlled. Note that the term control as it applies to cameras has a

slightly different meaning than when applied other types of CHART devices, such as

DMSs. An operator who controls a camera establishes a control session which typically

lasts some number of minutes. During this control session, the operator sends multiple

commands to the camera (e.g., Pan Left, Pan Stop). While the session is active, no other

operator may send commands to the camera. An operator may also view which cameras are

displayed on which monitors. Also, a camera may be revoked for display or control.

Starting in R7, includes NTCIP Camera
in all use cases.
(No code changes anticipated except
as noted.)

Operator

View Monitor
Assignments

The server will track which
cameras or tours are displayed
on which monitors. presentation to
operator is a GUI function.

Manage Camera

Take Camera
Offline

Put Camera
Online

Terminate Camera
Control

Take Monitor
Ofline

Remove Camera
From Monitors

Put Monitor
Online

Display Camera

Revoke
Control

Control Camera

R7 adds NTCIP
Cameras

Revoke
Display

Terminate Camera
Control

Display No Video Available
Source On Monitor

Manage Camera
Control

Send Camera
Commands

Move to Preset

Store Presets

R7 adds NTCIP
Cameras

Poll Camera

MODIFIED FOR R7.
Updated to include sending
commands to NTCIP Cameras.

System«include»«include»

«include»«include»

«include»«include»

«uses»

«uses»

«include»«include»

«include»«include»

«include»«include»

«uses»

«include»«include»

«include»«include»

«uses»

«include»«include»

«uses»

«include»«include»

«include»«include»
«uses»

«uses»

«include»«include»

«include»«include»

«include»«include»

Figure 6-4ManageCamera (Use Case Diagram)

CHART R7 Detailed Design 6-12 03/02/2010

6.4.1 Control Camera (Use Case)

An operator with the proper functional rights may control a camera. In this case, control

refers to issuing commands to the camera to cause the camera to pan/tilt/zoom etc. Refer to

the send Camera Commands use case diagram for more details.

6.4.2 Display Camera (Use Case)

An operator with the correct functional rights may display a camera on a monitor. See the

Display Camera use case diagram for a more detailed explanation.

6.4.3 Display No Video Available Source On Monitor (Use Case)

A No Video Source will be displayed on a monitor when the camera image has been

removed without being replaced by a new camera image. A No Video Source acts

essentially like another camera in the system.

6.4.4 Manage Camera (Use Case)

An operator with the correct functional rights may perform basic operations on a camera.

Please refer to the Manage Camera Use Case diagram for more detailed information.

6.4.5 Manage Camera Control (Use Case)

An operator with the proper functional rights may either request control of a camera or

terminate control of a camera. If the camera control request is successful, a camera control

session is established. See the Request Camera Control use case for further details. When

camera control is terminated, the camera control session is terminated. See the Terminate

Camera Control use case for further details.

6.4.6 Move to Preset (Use Case)

A user with control of a camera shall be able to move the camera to a preset position stored

with the camera. The Move to Preset Use Case can also invoked by a camera tour with a

preset associated with a camera.

6.4.7 Poll Camera (Use Case)

A camera is polled by the system in order to establish the status of the camera control

communications path. The polling process consists of sending the camera a poll command

and receiving a response from the camera. This is done by the system for all cameras that

are online, regardless of whether the cameras are controlled or not. It is also done

immediately after camera control has been granted so that the camera control status is

current. In addition, polling takes place while a camera is actively controlled. When a

CHART R7 Detailed Design 6-13 03/02/2010

camera is actively controlled, the polling is typically much more frequent that when the

camera is not actively controlled.

6.4.8 Put Camera Online (Use Case)

An operator with the proper functional rights can put a camera online if the camera is

currently offline. Putting the camera online makes it available for display and control to

any operators having the proper functional rights.

6.4.9 Put Monitor Online (Use Case)

An operator with the proper functional rights can put a monitor online if the monitor is

currently offline. Putting the monitor online makes it available for display to any operators

having the proper functional rights.

6.4.10 Remove Camera From Monitors (Use Case)

When a camera has been taken offline, the camera image must be removed from any

monitors on which it is displayed.

6.4.11 Revoke Control (Use Case)

An operator who revokes control of a camera does so from specific organizations. Since

operators themselves are not “owned” by an organization, the organization of the camera

control session is determined by the operators chosen (or assigned) monitor group.

6.4.12 Revoke Display (Use Case)

An operator who revokes display of a camera does so for a specific organization's

monitor(s). This can include multiple organizations. This means that monitors owned by

that organization cannot have the revoked camera image displayed on them. This includes

a specific capability to block from the public (meaning monitors designated as public will

be revoked).

6.4.13 Send Camera Commands (Use Case)

An operator with the proper functional rights may send commands to a camera. This

includes sending the command to the camera and receiving a response from the camera.

Commands sent to the camera include pan, tilt, zoom, iris control, focus, save preset, move

to preset, and color balance control commands. Commands may also include camera reset,

camera power, and camera titling commands.

6.4.14 Store Presets (Use Case)

A user with control of a camera shall be able to store a camera location (PTZ position) as a

camera preset. Up to ten presets can be stored per camera. Camera position and title are

CHART R7 Detailed Design 6-14 03/02/2010

stored in the camera for efficiency, as well as in the CHART database.

6.4.15 Take Camera Offline (Use Case)

Operators with the proper functional rights may take a camera offline. A camera that has

been taken offline may not be displayed or controlled until it is put back online.

6.4.16 Take Monitor Ofline (Use Case)

Operators with the proper functional rights may take a monitor offline. A monitor that has

been taken offline may not be displayed on until it is put back online

6.4.17 Terminate Camera Control (Use Case)

An operator with the proper functional rights may manually terminate a camera control

session that the operator is actively using. Note that an operator who has the proper

functional rights to establish the control session will always have the proper functional

rights to terminate that session. Also, a camera control session may be terminated if that

session is overridden by an appropriately privileged operator. Also, an active control

session may be terminated if a camera is taken offline or if the camera is no longer

displayed on a monitor within the controlling operator’s monitor group as a result of

displaying a NoVideoAvailable source. Note that part of this process will include

terminating the camera control GUI, although that is beyond the scope of this document.

6.4.18 View Monitor Assignments (Use Case)

An operator may view which cameras or camera tours are assigned to which monitors. This

information will be made available by the server for the GUI to interpret. The presentation

to the user is beyond the scope of this design.

CHART R7 Detailed Design 6-15 03/02/2010

6.5 ManageCameraControl (Use Case Diagram)

An operator may control establish a camera control session which will allow the operator to

issue Pan/Tilt/Zoom and other commands to the camera while that control session is active.

Only one camera control session at a time will be active so that only one operator at a time

may control a particular camera. The cameras that are available for an operator to control

include only those cameras that are displayed on monitors that are within the operator’s

monitor group. Presumably, the monitors are physically visible to the operator. This is so

that the operator will be able to see the camera image while the camera is actually being

moved. In addition an operator may be able to override an existing camera control session,

thereby taking control of a camera from another operator. The specific business rules

which govern camera control override are described in the Override Camera Control use

case.

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

R7
Starting in this release
NTCIP Cameras are supported.
(no code changes antic ipated except
as noted)

Control Camera
Manage Camera

Control

Poll Camera

Operator

Request Camera
Control

Status will be updated on server s ide.
GUI will actually notify the operator. GUI
design will not be addressed here.

Notify Operator of
Camera Control

Status

Override Camera
Control

Part of the request control process
includes launching the Camera
Control GUI. This process is strictly
part of GUI design.

Terminate Camera
Control

Check If Camera Local
Monitor Display

Check If Camera
Controlled

Evaluate Camera
Control Request

Grant Camera
Control

«include»

«include»

«include»

«include»

«include»

Figure 6-5 ManageCameraControl (Use Case Diagram)

CHART R7 Detailed Design 6-16 03/02/2010

6.5.1 Check If Camera Controlled (Use Case)

In order to evaluate a camera control request, the system must determine whether the

camera is currently controlled by another operator.

6.5.2 Check If Camera Local Monitor Display (Use Case)

A camera control request will only be granted if the camera is displayed on a monitor that is

in the monitor group of the operator requesting control. This is to implement the

requirement that an operator may only control a camera when the operator can actually see

the camera.

6.5.3 Control Camera (Use Case)

An operator with the proper functional rights may control a camera. In this case, control

refers to issuing commands to the camera to cause the camera to pan/tilt/zoom etc. Refer to

the send Camera Commands use case diagram for more details.

6.5.4 Evaluate Camera Control Request (Use Case)

An operator may control establish a camera control session which will allow the operator to

issue Pan/Tilt/Zoom and other commands to the camera while that control session is active.

Only one camera control session at a time will be active so that only one operator at a time

may control a particular camera. The cameras that are available for an operator to control

include only those cameras that are displayed on monitors that are within the operator’s

monitor group. Presumably, the monitors are physically visible to the operator. This is so

that the operator will be able to see the camera image while the camera is actually being

moved. In addition an operator may be able to override an existing camera control session,

thereby taking control of a camera from another operator. The specific business rules

which govern camera control override are described in the Override Camera Control use

case.

6.5.5 Grant Camera Control (Use Case)

When a camera control request has been granted, the "circuit" is established, the control

session becomes fully active, and the camera is polled so that the camera status may be

immediately updated.

6.5.6 Manage Camera Control (Use Case)

An operator with the proper functional rights may either request control of a camera or

terminate control of a camera. If the camera control request is successful, a camera control

session is established. See the Request Camera Control use case for further details. When

camera control is terminated, the camera control session is terminated. See the Terminate

CHART R7 Detailed Design 6-17 03/02/2010

Camera Control use case for further details.

6.5.7 Notify Operator of Camera Control Status (Use Case)

An operator will be notified of camera control status under a number of circumstances. If

another operator overrides the controlling operator's camera control session, the controlling

operator will be notified. If an administrator with sufficient privileges takes a camera

offline, then the controlling operator will be notified. Also, if the controlled camera is no

longer displayed on a monitor within the controlling operator’s monitor group, the

controlling operator will be notified that their camera control session has been terminated.

The actual mechanism used to notify the operator through the GUI is beyond the scope of

the server side design.

6.5.8 Override Camera Control (Use Case)

The Override Camera Control use case is invoked when an operator with the proper

functional rights requests control of a camera that is currently controlled by another

operator but where control would otherwise be allowed. If, based on a set of business rules,

the operator may override the existing camera control session, the requesting operator will

have the option to override the existing camera control session. If the requesting operator

chooses to override, the existing control session will be terminated and the new one will

start. Note that if the operator does choose to override an existing control session, control

may not be granted immediately. This is because the existing camera control session will

not terminate until all long running commands, such as setting a title on certain types of

cameras, have completed. A requesting operator may override an existing camera control

session based when the requesting operator has the Override Camera Control functional

right for the camera’s owning organization

6.5.9 Poll Camera (Use Case)

A camera is polled by the system in order to establish the status of the camera control

communications path. The polling process consists of sending the camera a poll command

and receiving a response from the camera. This is done by the system for all cameras that

are online, regardless of whether the cameras are controlled or not. It is also done

immediately after camera control has been granted so that the camera control status is

current. In addition, polling takes place while a camera is actively controlled. When a

camera is actively controlled, the polling is typically much more frequent that when the

camera is not actively controlled.

6.5.10 Request Camera Control (Use Case)

An operator with the proper functional rights may request control of a camera. This means

that the operator may send pan/tilt/zoom (PTZ) and other commands to the camera. The

system evaluates the request, and will accept the request, prompt the operator to override an

existing camera control session, or reject the request. If the request is accepted or the user

chooses to override an existing control session, a GUI will be launched which can be used

CHART R7 Detailed Design 6-18 03/02/2010

to send commands to the camera. The GUI itself will not be addressed in this document.

6.5.11 Terminate Camera Control (Use Case)

An operator with the proper functional rights may manually terminate a camera control

session that the operator is actively using. Note that an operator who has the proper

functional rights to establish the control session will always have the proper functional

rights to terminate that session. Also, a camera control session may be terminated if that

session is overridden by an appropriately privileged operator. Also, an active control

session may be terminated if a camera is taken offline or if the camera is no longer

displayed on a monitor within the controlling operator’s monitor group as a result of

displaying a NoVideoAvailable source. Note that part of this process will include

terminating the camera control GUI, although that is beyond the scope of this document.

CHART R7 Detailed Design 6-19 03/02/2010

6.6 R7VerifyNTCIPCameraCompatibility (Use Case Diagram)

This diagram shows the use cases for the NTCIP Camera Compatibility Tester, a stand

alone tool made available to Camera vendors to determine if their NTCIP camera is

compatible with the CHART system.

View NTCIP Camera Compatibility Test Results

Test Poll Camera Command

Test Zoom Camera Command

Test Adjust Focus Camera Command

Test Adjust Iris Camera Command

Test Power Camera On Off Command

Test Go to Preset Camera Command

Test Set Default Title
 Line Two Camera Command

Configure NTCIP Camera Compatibility Tester

Perform NTCIP Camera Compatibility Tests

Save NTCIP Camera Compatibility Test Results

Test Tilt Camera Command

Test Auto Focus Camera Command

Test Pan Camera Command

Test Set Preset Camera Command

Test Set Default Title
 Line One Camera Command

Set Pan-Tilt Speed

Camera Supplier

Test Auto Iris Camera Command

«inc lude»

«inc lude»

«inc lude»

«inc lude»

«inc lude»

«inc lude»

«inc lude»

«inc lude»

«inc lude»

«inc lude»

«inc lude»

«inc lude»

«inc lude»

«inc lude»

«inc lude»

Figure 6-6 R7VerifyNTCIPCameraCompatibility (Use Case Diagram)

CHART R7 Detailed Design 6-20 03/02/2010

6.6.1 Configure NTCIP Camera Compatibility Tester (Use Case)

This use case allows the user to configure settings in the camera tester to support testing.

6.6.2 Perform NTCIP Camera Compatibility Tests (Use Case)

The NTCIPCompatibilityTest shall allow Camera suppliers to test if an NTCIP Camera is

compatible with the CHART system.

6.6.3 Save NTCIP Camera Compatibility Test Results (Use Case)

The NTCIP Camera Compatibility Tester shall allow the user to save the test results to a

file.

6.6.4 Set Pan-Tilt Speed (Use Case)

The system will adjust camera pan/tilt speed based on the current zoom level and

configured minimum and maximum pan/tilt speeds.

6.6.5 Test Adjust Focus Camera Command (Use Case)

The NTCIP Camera Compatibility Tester shall allow the user to test if the CHART Camera

Adjust Focus feature operates properly on an NTCIP Camera.

6.6.6 Test Adjust Iris Camera Command (Use Case)

The NTCIP Camera Compatibility Tester shall allow the user to test if the CHART Camera

Adjust Iris feature operates properly on an NTCIP Camera.

6.6.7 Test Auto Focus Camera Command (Use Case)

The NTCIP Camera Compatibility Tester shall allow the user to test if the CHART Camera

Auto Focus feature operates properly on an NTCIP Camera.

6.6.8 Test Auto Iris Camera Command (Use Case)

The NTCIP Camera Compatibility Tester shall allow the user to test if the CHART Camera

Auto Iris feature operates properly on an NTCIP Camera.

6.6.9 Test Go to Preset Camera Command (Use Case)

The NTCIP Camera Compatibility Tester shall allow the user to test if the CHART Camera

Go to Preset feature operates properly on an NTCIP Camera.

CHART R7 Detailed Design 6-21 03/02/2010

6.6.10 Test Pan Camera Command (Use Case)

The NTCIP Camera Compatibility Tester shall allow the user to test if the CHART Camera

Pan feature operates properly on an NTCIP Camera.

6.6.11 Test Poll Camera Command (Use Case)

The NTCIP Camera Compatibility Tester shall allow the user to test if the CHART Poll

Camera command operates properly

6.6.12 Test Power Camera On Off Command (Use Case)

The NTCIP Camera Compatibility Tester shall allow the user to test if the CHART Camera

Set Power On/Off feature operates properly on an NTCIP Camera.

6.6.13 Test Set Default Title Line One Camera Command (Use Case)

The NTCIP Camera Compatibility Tester shall allow the user to test if the CHART Camera

Set Default Title Line one feature operates properly on an NTCIP Camera.

6.6.14 Test Set Default Title Line Two Camera Command (Use Case)

The NTCIP Camera Compatibility Tester shall allow the user to test if the CHART Camera

Default Title line two operates properly on an NTCIP Camera.

6.6.15 Test Set Preset Camera Command (Use Case)

The NTCIP Camera Compatibility Tester shall allow the user to test if the CHART Camera

Set Preset feature operates properly on a NTCIP Camera.

6.6.16 Test Tilt Camera Command (Use Case)

The NTCIP Camera Compatibility Tester shall allow the user to test if the CHART Camera

Tilt feature operates properly on an NTCIP Camera.

6.6.17 Test Zoom Camera Command (Use Case)

The NTCIP Camera Compatibility Tester shall allow the user to test if the CHART Camera

Zoom feature operates properly on an NTCIP Camera.

CHART R7 Detailed Design 6-22 03/02/2010

6.7 SendCameraCommands (Use Case Diagram)

An operator with the proper functional rights may control a camera. Once a control session

has been established, the operator will use the camera control GUI to issue control

commands to the camera. Those commands include pan, tilt, zoom, iris, focus, color

balance, camera reset, preset, and camera title commands. For each command sent to the

camera, a response shall be received from the camera. In addition to commands sent by the

user, the system will send poll commands to the camera and evaluate the responses from

those poll commands. The Poll Camera use case is described as part of the Manage Camera

use case diagram. Note that each type of command will have separate functional rights so

that some operators may be able to send pan, tilt, and zoom commands to the camera but

will not be allowed to set camera's color balance, for instance. Only COHU 3955, Surveyor

VFT, and NTCIP cameras may be controlled. COHU 3955 and NTCIP commands will be

sent to the camera through an IP based encoder, which will convert IP control commands to

serial camera control commands which will be sent to the camera over the encoder's COM

port. Surveyor VFT commands will be sent through either an IP based Encoder or a

Command Processor which in turn sends over an RS-232 port. The Command Processor

manages sending commands to multiple cameras attached to a single RS-232 port.

«uses» «uses»

«extends»

«uses»«uses»

«extends»

«uses»

«extends»

«uses»

«uses»

R7 adds NTCIP Camera

Execute Command

Send to Comm Port

Control NTCIP Camera

SendToCommandProcessor

Send Camera
Commands

Send to Encoder

Process3955ControlRequests

Operator

Control
Camera

Control COHU 3955
Camera

Control Surveyor VFT
Camera

Execute Command
Macro

Execute Simple
Command

«include» «include»

«include»

«include» «include»

Figure 6-7 SendCameraCommands (Use Case Diagram)

6.7.1 Control Camera (Use Case)

An operator with the proper functional rights may control a camera. In this case, control

refers to issuing commands to the camera to cause the camera to pan/tilt/zoom etc. Refer to

the send Camera Commands use case diagram for more details.

CHART R7 Detailed Design 6-23 03/02/2010

6.7.2 Control COHU 3955 Camera (Use Case)

The Control COHU camera use case provides the functionality needed to send commands

to COHU 3955 cameras. The command will be built, meaning that the command bytes will

be generated, and those commands will be sent to the camera. Each command sent to the

camera should elicit a response. Should no response be received from the camera, an error

shall be returned to the user indicating that the command has failed. However, the camera

will remain online and available to continue to receive commands.

6.7.3 Control NTCIP Camera (Use Case)

The NTCIP camera use case provides the functionality needed to send commands to NTCIP

cameras. The command will be built, meaning that the command bytes will be generated,

and those commands will be sent to the camera. Each command sent to the camera should

elicit a response. Should no response be received from the camera, an error shall be

returned to the user indicating that the command has failed. However, the camera will

remain online and available to continue to receive commands.

6.7.4 Control Surveyor VFT Camera (Use Case)

The Control Surveyor VFT camera use case provides the functionality needed to send

commands to Surveyor VFT cameras. The command will be built, meaning that the

command bytes will be generated, and those commands will be sent to the camera. Each

command sent to the camera should elicit a response. Should no response be received from

the camera, an error shall be returned to the user indicating that the command has failed.

However, the camera will remain online and available to continue to receive commands.

6.7.5 Execute Command (Use Case)

For the NTCIP camera, certain commands (such as setting a camera title) require multiple

commands to be sent to the camera. Camera control request processing for the NTCIP

camera includes building the binary command, sending that command to the camera via a

CameraControlComPort or IP based Encoder, and receiving a response from the camera via

the CameraControlComPort or IP based Encoder.

6.7.6 Execute Command Macro (Use Case)

For the Surveyor VFT camera, certain commands (such as setting a camera title) require

multiple commands to be generated from a compiled macro. Once these simple commands

have been assembled, camera control request processing for the Surveyor VFT camera

includes actually building the simple binary command, sending that command to the

camera via a Command Processor or IP based Encoder and receiving a response from the

camera via the Command Processor or IP based Encoder.

CHART R7 Detailed Design 6-24 03/02/2010

6.7.7 Execute Simple Command (Use Case)

Simple camera control request processing for the Surveyor VFT camera includes actually

building the simple binary command, sending that command to the camera via either a

Command Processor or an IP based Encoder and receiving a response from the camera via

the Command Processor or IP based Encoder.

6.7.8 Process3955ControlRequests (Use Case)

Camera control request processing for the COHU 3955 includes actually building the

binary command, sending that command to the camera via an IP sending device and

receiving a response from the camera via an IP sending device. Although the camera itself

sends and receives data using an RS-422 connection, CHART instead communicates with

an IP based encoder that converts TCP/IP data to serial data for transmission to the camera,

and converts serial data from the camera to TCP/IP for transmission to the system.

6.7.9 Send Camera Commands (Use Case)

An operator with the proper functional rights may send commands to a camera. This

includes sending the command to the camera and receiving a response from the camera.

Commands sent to the camera include pan, tilt, zoom, iris control, focus, save preset, move

to preset, and color balance control commands. Commands may also include camera reset,

camera power, and camera titling commands.

6.7.10 Send to Comm Port (Use Case)

A comm port is used for control of NTCIP cameras from the tester. Commands are sent

to/and received from the comm port. The comm port takes communicates with the camera

via RS-232.

6.7.11 Send to Encoder (Use Case)

An IP based Encoder can be used for control of COHU 3955, Vicon Surveyor VFT, or

NTCIP cameras. Commands are sent to/and received from the Encoder. The Encoder

itself, takes communicates with the camera via RS-232 or RS-422.

6.7.12 SendToCommandProcessor (Use Case)

The utilize command processor use case encompasses sending and receiving camera

commands to/from multiple cameras attached to a single RS-232 port.

CHART R7 Detailed Design 6-25 03/02/2010

6.8 View NTCIP Camera Compatibility Test Results (Use Case)

The NTCIP Camera Compatibility Tester shall provide output that shows the user the

results of the tests that are run.

«uses» «uses»

«extends»

«uses»«uses»

«extends»

«uses»

«extends»

«uses»

«uses»

R7 adds NTCIP Camera

Execute Command

Send to Comm Port

Control NTCIP Camera

SendToCommandProcessor

Send Camera
Commands

Send to Encoder

Process3955ControlRequests

Operator

Control
Camera

Control COHU 3955
Camera

Control Surveyor VFT
Camera

Execute Command
Macro

Execute Simple
Command

«include» «include»

«include»

«include» «include»

Figure 6-8 SendCameraCommands (Use Case Diagram)

6.8.1 Control Camera (Use Case)

An operator with the proper functional rights may control a camera. In this case, control

refers to issuing commands to the camera to cause the camera to pan/tilt/zoom etc. Refer to

the send Camera Commands use case diagram for more details.

6.8.2 Control COHU 3955 Camera (Use Case)

The Control COHU camera use case provides the functionality needed to send commands

to COHU 3955 cameras. The command will be built, meaning that the command bytes will

be generated, and those commands will be sent to the camera. Each command sent to the

camera should elicit a response. Should no response be received from the camera, an error

shall be returned to the user indicating that the command has failed. However, the camera

will remain online and available to continue to receive commands.

6.8.3 Control NTCIP Camera (Use Case)

The NTCIP camera use case provides the functionality needed to send commands to NTCIP

cameras. The command will be built, meaning that the command bytes will be generated,

and those commands will be sent to the camera. Each command sent to the camera should

CHART R7 Detailed Design 6-26 03/02/2010

elicit a response. Should no response be received from the camera, an error shall be

returned to the user indicating that the command has failed. However, the camera will

remain online and available to continue to receive commands.

6.8.4 Control Surveyor VFT Camera (Use Case)

The Control Surveyor VFT camera use case provides the functionality needed to send

commands to Surveyor VFT cameras. The command will be built, meaning that the

command bytes will be generated, and those commands will be sent to the camera. Each

command sent to the camera should elicit a response. Should no response be received from

the camera, an error shall be returned to the user indicating that the command has failed.

However, the camera will remain online and available to continue to receive commands.

6.8.5 Execute Command (Use Case)

For the NTCIP camera, certain commands (such as setting a camera title) require multiple

commands to be sent to the camera. Camera control request processing for the NTCIP

camera includes building the binary command, sending that command to the camera via a

CameraControlComPort or IP based Encoder, and receiving a response from the camera via

the CameraControlComPort or IP based Encoder.

6.8.6 Execute Command Macro (Use Case)

For the Surveyor VFT camera, certain commands (such as setting a camera title) require

multiple commands to be generated from a compiled macro. Once these simple commands

have been assembled, camera control request processing for the Surveyor VFT camera

includes actually building the simple binary command, sending that command to the

camera via a Command Processor or IP based Encoder and receiving a response from the

camera via the Command Processor or IP based Encoder.

6.8.7 Execute Simple Command (Use Case)

Simple camera control request processing for the Surveyor VFT camera includes actually

building the simple binary command, sending that command to the camera via either a

Command Processor or an IP based Encoder and receiving a response from the camera via

the Command Processor or IP based Encoder.

6.8.8 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password

combination and granted roles for system access.

6.8.9 Process3955ControlRequests (Use Case)

Camera control request processing for the COHU 3955 includes actually building the

binary command, sending that command to the camera via an IP sending device and

CHART R7 Detailed Design 6-27 03/02/2010

receiving a response from the camera via an IP sending device. Although the camera itself

sends and receives data using an RS-422 connection, CHART instead communicates with

an IP based encoder that converts TCP/IP data to serial data for transmission to the camera,

and converts serial data from the camera to TCP/IP for transmission to the system.

6.8.10 Send Camera Commands (Use Case)

An operator with the proper functional rights may send commands to a camera. This

includes sending the command to the camera and receiving a response from the camera.

Commands sent to the camera include pan, tilt, zoom, iris control, focus, save preset, move

to preset, and color balance control commands. Commands may also include camera reset,

camera power, and camera titling commands.

6.8.11 Send to Comm Port (Use Case)

A comm port is used for control of NTCIP cameras from the tester. Commands are sent

to/and received from the comm port. The comm port takes communicates with the camera

via RS-232.

6.8.12 Send to Encoder (Use Case)

An IP based Encoder is used for control of either COHU 3955, Vicon Surveyor VFT, or

NTCIP cameras. Commands are sent to/and received from the Encoder. The Encoder

itself, takes communicates with the camera via RS-232 or RS-422.

6.8.13 SendToCommandProcessor (Use Case)

The utilize command processor use case encompasses sending and receiving camera

commands to/from multiple cameras attached to a single RS-232 port.

CHART R7 Detailed Design 7-28 03/02/2010

7 Detailed Design – NTCIP Camera

7.1 Human-Machine Interface

7.1.1 Add/Edit NTCIP Camera

The existing screens used to add a camera to the system or to edit an existing camera are changed

to support the NTCIP camera model. When adding a new camera to the system, a new model

choice is available, NTCIP. See the Camera Model field in the screen shot below:

When Camera Model is set to NTCIP, additional configuration fields appear that are specific to

the NTCIP Camera Model. This includes the NTCIP Community String, HDLC Framing option,

and speeds for each type of camera movement (pan, tilt, zoom, focus). The screen capture below

provides an example of how these configuration options will appear. Note that the speeds for

pan and tilt will actually include two speeds, a min and max, to support variable speed pan/tilt.

Two additional fields will also be included to specify the min and max zoom values supported by

the camera. These two fields are also required for variable speed pan/tilt and not shown.

CHART R7 Detailed Design 7-29 03/02/2010

7.1.2 View NTCIP Camera Details

The Camera Details page is changed to show fields specific to NTCIP Cameras when the

Camera model is set to NTCIP. The fields included are those discussed above regarding

Add/Edit Camera and and example is shown below. Note that additional fields will also appear

on this screen that are required for variable speed pan/tilt, such as min/max pan and tilt speeds

(instead of a single speed for each) and min/max zoom values.

7.1.3 Control NTCIP Camera

The camera control dialog for NTCIP cameras will operate like the control dialogs that currently

exist for Vicon and Cohu cameras. Some features of the Vicon and Cohu cameras are not

supported by the NTCIP camera model and those features will not appear on the NTCIP camera

control dialog, however the features that do exist will operate identically to the Vicon and Cohu

versions of these features. See the sample NTCIP camera control dialog below:

CHART R7 Detailed Design 7-30 03/02/2010

The following features are supported on the NTCIP Camera control dialog:

Pan, tilt, zoom, focus (in/out), auto focus, iris (open/close), auto iris, set titles (2 lines), power

off, power on, set preset, move to preset.

7.1.4 NTCIP Camera Compliance Tester

The NTCIP Camera Compliance Tester is a stand-alone application that includes its own

installer, separate from the CHART system. The main window of the application will, contain a

text area where informational messages appear, a menu system, and a camera control area. A

mock up of this screen is shown below.

Figure 7-1. NTCIP Camera Compliance Tester (Main Screen)

After comms settings are configured and the Connect button is hit, once the camera connection is

established, the Connect light turns green and all control buttons become active, as shown below.

CHART R7 Detailed Design 7-31 03/02/2010

Figure 7-2 NTCIP Camera Compliance Tester (Connecting)

Result Area

The result area contains information about the tests as they are run. The text in this area can be

saved to a file after testing to allow the vendor to provide their testing results to SHA. The area

can also be cleared if desired to start a fresh set of results.

Camera Control Area

The Camera Control area of the main window is used to send control commands to the camera,

such as Pan, Tilt, Zoom, and Focus. Presets can also be saved and used from this area. Note that

the screen mock up may change in appearance, but is used to convey the idea that controls for

these features will exist in a separate area of the main window.

File Menu

The File Menu rovides the ability to save the results shown in the output area, or to clear the

output area. A menu item also exists to allow the user to exit the application.

CHART R7 Detailed Design 7-32 03/02/2010

Configuration Menu

The configuration menu provides access to the communications configuration dialog. This

dialog allows the user to configure settings related to communications with and manipulation of

the camera being tested. The tester application supports two types of communications; direct

connect RS-232 or TCP/IP. A mock up of the communications configuration dialog is shown

below for TCP/IP and RS-232 communications:

Figure 7-3 NTCIP Camera Compliance Tester (Configuration)

Tests Menu

The tests menu provides access to tests that can be run that do not require camera movement and

instead result in status being added to the output area. An example is for the Poll command,

which causes the application to poll the camera and display the poll results in the output area.

Help Menu

The help menu provides access to version information and a help page.

CHART R7 Detailed Design 7-33 03/02/2010

7.2 System Interfaces

The class diagrams in this section describe the CORBA interface classes and relationships that

are being added or modified to support the NTCIP Camera feature.

7.2.1 Class Diagrams

7.2.1.1 VideoHighLevel (Class Diagram)

This diagram shows the High Level CHART II CORBA interfaces. This diagram does not

show all VideoService IDL elements, but shows the highest level elements and their

interrelationships. For further details, see VideoHighLevel-VideoSource, VideoHighLevel-

VideoSink, and VideoHighLevel-VideoTransmission diagrams. The collection of these last

three diagrams show all planned CORBA/IDL interface objects for the CHART II Video

Service. In all four of these diagrams, some boxes are shown indicating objects planned to

be implemented for later releases. These objects have been considered for future planning

purposes, to ensure than the current design is well-thought out enough to be able to

accommodate future planned enhancements.

This diagram shows cameras and related information generally on the left side, monitors

and related information generally on the right side, and video transmission and routing

capabilities in the central part of the diagram. The VideoProvider interface is the top of the

interface set which contains the VideoCamera interface. VideoSource includes video

sources including fixed cameras, image generators, etc. Likewise on the right side,

VideoCollector is at the top, opposite VideoProvider, with VideoSink and Monitor lower

down. In addition to VideoSource and VideoSink objects, BridgeCircuit objects will also

be VideoProviders and VideoCollectors, since any bridge circuit both collects video from

some other VideoProvider and provides video to the next VideoCollector in line. Multiple

bridge circuits may be present between the ultimate VideoProvider (i.e., the VideoSource,

that is, the camera, the true source of the image) and the ultimate VideoCollector (i.e., the

VideoSink, that is, the monitor, the final sink of the image).

CHART R7 Detailed Design 7-34 03/02/2010

Vi deoTourI nf o
«st r uct »

uses

1

1

*

1

CommandProcessor

FUTURE (beyond R2B2) : r esendPr eset () .

For R2B2, m ove displayI m age()
f r om VideoCollect or t o VideoSink
(sam e signat ur e) . Added
connect ReceivingToSendingDeivce()
t o VideoCollect or t o r eplace
VideoCollect or 's displayI m age() .

connect RecevingToSendingDevice()
added t o I DL (was im plem ent ed as a
VideoSinkI m pl pr ivat e m et hod) . M ove
t o VideoCollect or I m pl and add
VideoSour ceI D f or populat ing new
m _sour ceI D value of Collect or St at us.

Tau UM L does not pr ovide st er ot ypes f or
dist inguishing st r uct and valuet ype classes.
So t hese st er eot ypes ar e used f or all R2B1
Class Diagr am s:

<<dat at ype>> - Def ined in I DL as a sim ple dat a
 t ype, i. e. , a st r uct .
<<power t ype>> - Def ined in I DL as t he (m or e
 com plicat ed) valuet ype.
At t his point no valuet ypes ar e def ined f or
R2B1 or R2B2.

Vi deoTourFact ory
«int er f ace»

1

1

Vi deoTourSt at e

Vi deoTour
«int er f ace»

Vi deoTourConf i g
«dat at ype»

Vi deoProvi der
«int er f ace»

Cont rol l i ngI nf o
«dat at ype»

FUTURE:
m _t em por ar y - -
how t o det ect when
t em p t our can be
delet ed?

Vi deoSi nkI nf o
«dat at ype»

adjXxxx() m et hods - - For
pan, t ilt , zoom , f ocus, ir is - -
any posit ive value m eans
r ight , up, in, f ar , open;
any negat ive value m eans
lef t , down, out , near , close;
zer o m eans st op.

m _pr eset Num ber of zer o m eans none
(don't m ove t o any pr eset) .

Vi deoTourEnt ry
«dat at ype»

SharedResource
«int er f ace»

Preset Enabl ed
«int er f ace»

Vi deoTourSt at us
«dat at ype»

Uni quel yI dent i f i abl e
«int er f ace»

Vi conSVFTPgmCmd
«enumer at ion»

Vi deoTransmi ssi onDevi ce
«int er f ace»

Vi deoSendi ngDevi ce
«int er f ace»

CameraCont rol Devi ce
«int er f ace»

CommEnabl ed
«int er f ace»

NTCI PCamera

Vi conSVFTCamera
«int er f ace»

Di agonal l yM ovabl e
«int er f ace»

Vi deoSource
«int er f ace»

CameraCont rol ComPort

Vi deoSw i t chConf i g
«dat at ype»

Sw i t chPort
«int er f ace»

Sw i t chI nput Port
«int er f ace»

Vi deoSw i t ch
«int er f ace»

CO HU3955Camera
«int er f ace»

NoVi deoAvai l abl eSource
«int er f ace»

Vi deoFabri c
«int er f ace»

Codec
«int er f ace»

Encoder
«int er f ace»

NO TE: disconnect () is a bookkeeping
exer cise only (updat e dat abase/ st at us) .
V1500 does not suppor t a disconnect
f unct ion.

Vi deoCamera
«int er f ace»

Vi deoRout e
«int er f ace»

Vi deoFabri cConf i g
«dat at ype»

Bri dgeCi rcui t Conf i g
«dat at ype»

Cont rol l abl eVi deoCamera
«int er f ace»

Vi deoRecei vi ngDevi ce
«int er f ace»

Bri dgeCi rcui t
«int er f ace»

Decoder
«int er f ace»

Transf erabl eSharedResource
«int er f ace»

G eoLocat abl e
«int er f ace»

New f or R2B2:
set Locat ionDesc()
addLocat ionPr of ile() ,
delet eLocat ionPr of ile() .

*

1

0. . 1

*

includes

1

1

1

*

is car r ying

*

*

1

r out es using

*

is displayed on

*

FUTURE

FUTURE (beyond R2B2) .

1

1

Sw i t chO ut put Port
«int er f ace»

Vi deoCol l ect or
«int er f ace»

Vi deoRout eM anager
«int er f ace»

Vi deoSi nk
«int er f ace»

SWM oni t or

cont r ols
cam er a
using

1

1

is in includes

1

1

is car r ying

1

r out es video
t o and f r om

1

uses

1

is r unning on

*

*

is par t of

uses

1

1

1

1

1
is in

1

*

is m anaged by

1

is displaying

*

*

FUTURE: schedulDisplayI m age()

1

FUTURE: set Posit ion()

M oni t or
«int er f ace»

1

*

1

1

*

1

1

1

*

is
r unning

+cr eat eTour (t oken, t our) : VideoTour I nf o
+get Tour s(t oken) : VideoTour I nf o[]
+r em oveCam er aFr om VideoTour (t oken, cam er aI D)

+m _t our I D : I dent if ier
+m _t our : VideoTour

ACTI VE
I NACTI VE
SUSPENDED

+get VideoTour St at us() : VideoTour St at us
+get VideoTour Conf ig() : VideoTour Conf ig
+set VideoTour Conf ig(t oken, Tour Conf ig, cm dSt at)
+r em oveVideoSink(t oken, sinkI D)

+m _nam e
+m _t our Ent r ies: Tour Ent r y[]
+m _t em por ar y: boolean
+m _dwellTim eSecs: int

+get Pr ovider St at us() : VideoPr ovider St at us
+get Pr ovider Conf ig(t oken) : VideoPr ovider Conf ig
+set Pr ovider Conf ig(t oken, VideoPr ovider Conf ig)
+r em ovePr ovider (t oken)
+addDisplay(t oken, displayI nf o: M onit or DisplayI nf o)
+r em oveDisplay(t oken, displayI D)

+m _opCent er I nf o: O pCent er I nf o
+m _user I nf o: Cont r ollingUser I nf o

+m _sinkNam e: st r ing
+m _sink: VideoSink

+m _videoSour ceNam e: st r ing
+m _videoSour ce: VideoSour ce
+m _pr eset Num ber : int

get Cont r ollingO pCent er () : O pCent er I nf o
get O wner O r gI D() : I dent if ier

+m oveToPr eset (t oken, pr eset : int , onTour : boolean)
+savePr eset (t oken, pr eset : int , t it le, cm dSt at : Com m andSt at us)

get I D()
get Nam e()

+get DeviceSt at us() : VideoTr ansm issionDeviceSt at us
+get DeviceConf ig(t oken) : VideoTr ansm issionDeviceConf ig

+m _act iveSt at e: VideoTour St at e
+m _sinkI nf o: VideoSinkI nf o[]
+m _t em por ar y: boolean

CM D_UP
CM D_DO WN
CM D_LEFT
CM D_RI G HT
CM D_SELECT
CM D_CANCEL
CM D_AUX1
CM D_AUX2

+get SendingDeviceSt at us() :
 VideoSendingDeviceSt at us

+init ialize()
+shut down()
+connect ()
+disconnect ()
+send(m essageByt e)
+r eceive(dat a, lengt h)

+set Aut oFocus(t oken, boolean)
+r esendPr eset (t oken, pr eset Num : int)
+set Pr ogr am M ode(t oken)
+exit Pr ogr am M ode(t oken)
+pr ogr am Com m and(VFTPgm Cm d, count : int)
+set Color G ainSet upM ode(t oken, boolean)
+exit Adjust Color M ode(t oken)
+ent er BlueColor G ainM enu(t oken)
+ent er RedColor G ainM enut oken()
+adjBlue(t oken, boolean)
+adjRed(t oken, boolean)
+get ViconSVFTCam er aSt at us(t oken)
+set ViconSVFTCam er aConf ig()
+t oggleColor G ainM ode(t oken)
+changeLensSpeed(t oken)
+abor t (t oken)

+adjPanTilt (t oken, panDir , t ilt Dir)

+get Sour ceSt at us() : VideoSour ceSt at us
+get Sour ceConf ig(t oken) : VideoSour ceConf ig
+set Sour ceConf ig(t oken, VideoSour ceConf ig)
+set User DisplaySt at us(t oken, boolean)
+isNoVideoAvailable() : boolean
+isDisplayable(t oken, inf o: VideoCollect or I nf o, r eason: st r ing, sour ceFabr icI D) : bool
+isRem oveable(inf o: VideoCollect or I nf o, m onit or G r oupI Ds: I dent if ier [] , r eason: st r ing) : bool
+blockToPublic(t oken, Ext endedCom m andSt at us)
+unblockToPublic(t oken)
+r evokeDisplay(t oken, r evokedO r gI Ds: I dent if ier List , Ext endedCom m andSt at us)
+unr evokeDisplay(t oken, unr evokedO r gI Ds: I dent if ier List)
+isRevokedFor (or gI d: I dent if ier)

+m _nam e: st r ing
+m _m odel: VideoSwit chM odel
+m _swit chFabr icI D: I dent if ier
+m _inPor t s: shor t []
+m _out Por t s: shor t []

+get St at us() : VideoSwit chSt at us
+get Conf igur at ion(t oken) : V1500Cwit chConf ig
+set Conf igur at ion(t oken, V1500Swit chConf ig)
+r em ove(t oken)
+connect (t oken, sr c: Swit chI nput Por t , dest : Swit chO ut put Por t)
+disconnect (t oken, dest : Swit chO ut put Por t)
+r eloadSwit chConnect ions(t oken)

+get CO HU3955Cam er aSt at us(t oken) : CO HU3955Cam er aSt at us
+get CO HU3955Cam er aConf ig(t oken) : CO HU3955Cam er aConf ig
+set CO HU3955Cam er aConf ig(t oken, CO HU3955Cam er aConf ig)
+adjRed(t oken, dir ect ion: int)
+adjBlue(t oken, dir ect ion: int)
+set Aut oFocus(t oken, boolean)
+set Aut oColor (t oken, boolean)
+set LensFast (t oken, boolean)
+set Power O n(t oken, boolean)

+get Conf igur at ion(t oken) : VideoFabr icConf ig
+set Conf igur at ion((t oken, videoFabr icConf ig)
+set Swit chI D(t oken, I dent if ier)
+r em ove(t oken)

get I PAddr ess() : I PAddr ess

+get Conf igur at ion() : VideoRout eConf ig
+get St at us() : VideoRout eSt at us

+get Cam er aSt at us() : VideoCam er aSt at us
+get Cam er aConf igur at ion(t oken) : VideoCam er aConf ig
+set Cam er aConf igur at ion(t oken, VideoCam er aConf ig)
+isCont r ollable() : boolean
+set Locat ion(t oken: AccessToken, locat ion: O bject Locat ion)
 : void

+m _nam e: st r ing
+m _swit chI D: I dent if ier

+get ReceivingDeviceSt at us() : VideoReceivingDeviceSt at us
+connect Fr om (t oken, VideoTr ansm issionDeviceConf ig,
 VideoSour ceI D: I dent if ier) : boolean
+disconnect Fr om (t oken, VideoTr ansm issionDeviceConf ig) : boolean
+disconnect (t oken) : boolean

+m _nam e: st r ing
+m _owningO r gI D: I dent if ier
+m _net wor kConnect ionSit e: st r ing
+m _owningO r gI D: I dent if ier
+m _net wor kConnect ionSit e: st r ing
+m _st ar t Pr ovider Conf ig: VideoPr ovider Conf ig
+m _endCollect or Conf ig: VideoCollect or Conf ig

t akeO f f line()
put O nline()
put I nM aint enanceM ode()
get Com m M ode()

+r equest Cont r ol(t oken, over r ideRequest ed: boolean,
 inf o: Cont r ollingI nf o, cm dSt at : Com m andSt at us)
+t er m inat eCont r ol(t oken, cm dSt at : Com m andSt at us)
+isCont r olled() : boolean
+inhibit Cont r ol(t oken, hier ar chyLevel: int)
+adjpan(t oken, dir ect ion: int)
+adjTilt (t oken, dir ect ion: int)
+adjZoom (t oken, dir ect ion: int)
+adjFocus(t oken, wher e: int)
+adjI r is(t oken, dir ect ion: int)
+set Aut oI r is(t oken, boolean)
+set Act iveTit le(t oken, t it le, lineNum : int , cm dSt at : Com m andSt at us)
+r eset Cam er a(t oken)
+pollCam er a(t oken, r ef r eshM onit or List : boolean)

+get Conf igur at ion(t oken) : Br idgeCir cuit Conf ig
+set Conf igur at ion(t oken, Br idgeCir cuit Conf ig)

get Locat ionDesc() : St r ing
set Locat ionDesc(t oken, St r ing) : void
get Locat ionPr of iles() : Locat ionPr of ileList
addLocat ionPr of ile(Locat ionPr of ile) : void
delet eLocat ionPr of ile(t oken, Locat ionPr of ile) : void

+get Collect or St at us() : VideoCollect or St at us
+get Collect or Conf ig(t oken) : VideoCollect or Conf ig
+set Collect or Conf ig(t oken, VideoCollect or Conf ig)
+r em oveCollect or (t oken)
+connect ReceivingToSendingDevice(t oken, VideoPr ovider I nf o,
 VideoSour ceI D, over r ideRequest ed, t est O nly, Com m andSt at us) : void
+disconnect ReceivingFr om SendingDevice(oken, VideoPr ovider I nf o,
 Com m andSt at us) : void

+connect (t oken, VideoPr ovider I nf o, VideoPr ovider Conf ig,
 VideoCollect or I nf o, VideoCollect or Conf ig,
 over r ideRequest ed, t est O nly, r eason: st r ing, cm dSt at)
+disconnect (t oken, VideoPr ovider I nf o, VideoCollect or I nf o)
+r einit ialize(t oken)

set Cont r ollingO pCent er (t oken, opCt r I nf o: O pCent er I nf o)

+get SinkSt at us() : VideoSinkSt at us
+get SinkConf ig(t oken) : VideoSinkConf ig
+set SinkConf ig(t oken, conf ig: VideoSinkConf ig)
+displayI m age(t oken, over r ideRequest ed, m onit or G r oupI d,
 VideoPr ovider I nf o, f or Tour : boolean,
 cm dSt at : Com m andSt at us) : void
+st ar t Tour (t oken, m onit or G r oupI D, t our I D, cm dSt at)
+st opTour (t oken, m onit or G r oupI D, t our I D, cm dSt at)
+suspendTour (t oken, m onit or G r oupI D, t our I D, cm dSt at)
+r esum eTour (t oken, m onit or G r oupI D, t our I D, cm dSt at)
+t our Conf igChanged(t oken, t our I D: I dent if ier , t our Conf ig:
 VideoTour Conf ig)
+t our Delet ed(t oken, t our I D: I dent if ier)
+displayNoVideoAvailable(t oken, sour ceI dToReplace,
 m onit or G r oupI d: I dent if ier , cm dSt at : Com m andSt at us)
+cam er aUnavailable(t oken, sour ceI d: I dent if ier)
+scheduleDisplayI m age(t oken, ScheduledSour ce)

+set Posit ion(t oken, xPos, yPos, xSize, ySize)
+get M onit or St at us() : M onit or St at us
+get M onit or Conf ig(t oken) : M onit or Conf ig
+set M onit or Conf ig(t oken, m onit or Conf ig: M onit or Conf ig)

Figure 7-4 VideoHighLevel (Class Diagram)

7.2.1.1.1 BridgeCircuit (Class)

The BridgeCircuit interface is implemented by a objects which serve to bridge disparate

switch fabrics within video routes. These switch fabrics would include the switch fabrics

based around a V1500 switch and also the "null" switch fabric consisting of no switch and

codec VideoTransmissionDevice objects. The BridgeCircuit interface includes both the

VideoCollector interface (meaning the BridgeCircuit receives video from another

VideoProvider, ultimately the VideoSource) and the VideoProvider interface (meaning the

BridgeCircuit provides video to another VideoCollector, ultimately to one or more

VideoSink objects).

7.2.1.1.2 BridgeCircuitConfig (Class)

This represents configuration information for a bridge circuit. This is the status of a

BridgeCircuit object. It consists primarily of configuration of the VideoProvider side (input

to the bridge circuit) and of the VideoCollector side (output of the bridge circuit).

CHART R7 Detailed Design 7-35 03/02/2010

7.2.1.1.3 CameraControlComPort (Class)

The CameraControlComPort interface is implemented by a class representing a COM port

with direct connection to the control port of a video camera. It is used to send video camera

control commands and return responses to a camera control process.

7.2.1.1.4 CameraControlDevice (Class)

The CameraControlDevice interface is implemented by classes which provides

communications for access to control functions for a video camera. This includes encoders

and direct COM ports.

7.2.1.1.5 Codec (Class)

The Codec interface is implemented by objects representing codec devices (that is, encoders

and decoders). It defines generic methods to be implemented by both encoders and

decoders.

7.2.1.1.6 COHU3955Camera (Class)

The COHU3955Camera interface is implemented by objects representing COHU model

3055 video cameras. It extends the ControllableVideoCamera interface by adding methods

unique to the COHU 3955 cameras (unique within the universe of camera types planned for

implementation within CHART II).

7.2.1.1.7 CommandProcessor (Class)

The CommandProcessor class provides an implementation of the CommandProccesor

interface and is derived from the CameraControDevice class. The CommanProcessor

manages the control of multiple cameras attached to one or more COM ports. The

CommandProcessor may or may not be local to the camera that is being controlled.

7.2.1.1.8 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can have their communications

turned on or off. This interface also supports a maintenance mode (although any given

implementation may choose to implement putInMaintenanceMode() by throwing a

CHART2Exception, if maintenance mode is not supported by that particular

implementation). This interface is typically implemented only for field devices.

7.2.1.1.9 ControllableVideoCamera (Class)

The ControllableVideoCamera interface is implemented by objects representing

controllable video cameras within the CHART II system. The ControllableVideoCamera

interface represents a controllable video camera as opposed to an uncontrollable,

immovable VideoCamera. Current plans call for classes to represent a COHU 3955

camera, Vicon SVFT camera, and NTCIP-compliant camera, and there are interfaces

defined for each of these subtypes of ControllableVideoCamera. The

ControllableVideoCamera interface includes all methods common to the two known types

CHART R7 Detailed Design 7-36 03/02/2010

of video cameras currently in use by MDSHA, although it is likely to contain a superset of

methods which would be implemented by the entire universe of all video cameras which

could someday be used. This interface may have to be refined in the event that future

brands or models of video cameras might be incorporated under CHART II, but it is an

appropriate set of methods for the present day. Current plans call for classes to represent a

COHU 3955 camera, Vicon SVFT camera, and NTCIP-compliant camera.

7.2.1.1.10 ControllingInfo (Class)

The ControllingInfo structure contains information about the entity controlling (or

requesting to control) a VideoCamera.

7.2.1.1.11 Decoder (Class)

The Decoder interface is implemented by classes representing any type of video decoder.

The Decoder interface includes both the Codec and the VideoReceivingDevice interfaces.

7.2.1.1.12 DiagonallyMovable (Class)

The DiagonallyMovable interface is implemented by VideoCamera-enabled classes which

can be moved diagonally in addition to standard orthogonal pan and tilt commands. A

particular implementation may support 45-degree movements only, in which case the

panDir and tiltDir parameters are +/- 1 to indicate direction only, or an implementation may

support 360 degrees of motion, in which case, in addition to signs, the relative ratios of the

parameters indicate the percent of movement proportionally in the pan/tilt directions. This

interface is expected to be implemented beyond R2B2.

7.2.1.1.13 Encoder (Class)

The Encoder interface is implemented by classes representing any type of video encoder.

The Encoder interface includes both the Codec and the VideoSendingDevice interfaces,

which means in addition to providing forwarding of video, it also is used to send video

camera control commands and return responses to a camera control process.

7.2.1.1.14 GeoLocatable (Class)

This interface is implemented by classes that can provide location information to their

users, that is, classes representing real physical world objects which can be described as

having a specific real-world location, such as a latitude/longitude, and/or a location along a

roadway, and or a textual location description.

7.2.1.1.15 Monitor (Class)

The Monitor interface is implemented by objects which represent a video monitor, e.g., a

real, physical "television set" on which a video image can be displayed. This is the most

common type of VideoSink (the other being a SWMonitor, part of a future requirement to

stream video directly to user's workstations (or potentially other nearby computers).

CHART R7 Detailed Design 7-37 03/02/2010

7.2.1.1.16 NoVideoAvailableSource (Class)

The FixedVideoSource interface is implemented by objects which represent a video source

other than a video camera, such as the "No Image Available" image generators. This

interface could also represent a VCR or any other video source that is not a camera. The

FixedVideoSource does not include the GeoLocatable interface because the location (e.g.

lat/long) of a fixed video source is irrelevant in CHART II processing (unlike for a

VideoCamera, for which the location (lat/long) of a camera could someday be used for

automatic identification of cameras near traffic events, automatic pointing of cameras to

traffic events, etc.)

7.2.1.1.17 NTCIPCamera (Class)

The NTCIPCamera interface is implemented by objects which support the NTCIP standard

for CCTV cameras.

7.2.1.1.18 PresetEnabled (Class)

The PresetEnabled interface is implemented by VideoCamera-enabled classes which can

store and move to presets. The savePreset() method saves the current camera position as

the preset position. This interface is expected to be implemented in R2B2.

7.2.1.1.19 SharedResource (Class)

The SharedResource interface is implemented by any object that must always have an

operations center responsible for the disposition of the resource while the resource is in use.

7.2.1.1.20 SwitchInputPort (Class)

This is the interface for a switch input port. A switch input port is a type of switch port and

is also a type of VideoSendingDevice, meaning it can send a video signal on behalf of the

VideoProvider attached to it to any one or more VideoReceivingDevices (and

corresponding VideoCollectors).

7.2.1.1.21 SwitchOutputPort (Class)

This is the interface for a switch output port. A switch output port is a type of switch port

and is also a type of VideoReceivingDevice (meaning it receives a video signal on behalf of

the VideoCollector attached to it). As VideoReceivingDevice, a SwitchOutputPort is

capable of being connected to any VideoSendingDevice.

7.2.1.1.22 SwitchPort (Class)

The is a generic SwitchPort interface. It is a CommEnabled interface, meaning a

SwitchPort can be online or offline. (A SwitchPort cannot be in maintenance mode).

7.2.1.1.23 SWMonitor (Class)

The SWMonitor interface is implemented by objects which represent a software monitor

capable of receiving and displaying video (i.e., a streaming video MPEG software decoder

CHART R7 Detailed Design 7-38 03/02/2010

running on a PC). This interface supports a future requirement to display video directly to

user's workstations.

7.2.1.1.24 TransferableSharedResource (Class)

The TransferrableSharedResource interface is implemented by any object that must always

have an operations center responsible for the disposition of the resource while the resource

is in use but may also be allowed to transfer control of that resource to another operations

center.

7.2.1.1.25 UniquelyIdentifiable (Class)

The UniquelyIdentifiable interface is implemented by classes whose instances have a

unique identifier that is guaranteed not to match the identifier of any other uniquely

identifiable objects in the system. It provides access to the unique ID, and the name (which

does not have to be unique).

7.2.1.1.26 ViconSVFTCamera (Class)

The ViconSVFTCamera interface is implemented by a class representing the Vicon

Surveyor VFT model video camera. (As there are no other Vicon brand cameras used

within CHART II, there is no base ViconCamera interface representing all Vicon-brand

cameras. For one thing, there would be no known basis for allocating methods to the base

interface and the VFT interface.)

7.2.1.1.27 ViconSVFTPgmCmd (Class)

The ViconSVFTPgmCmd enueration defines the values that can be used in the

programCommand() method of the ViconSVFTCamera interface.

7.2.1.1.28 VideoCamera (Class)

The VideoCamera interface is implemented by objects representing video cameras within

the CHART II system. Classes implementing this interface (and nothing below this

interface would be fixed (non-controllable) video cameras. The VideoCamera interface

includes the GeoLocatable interface, to someday allow for advanced features such as

automatic identification of cameras near traffic events, automatic pointing of cameras to

traffic events, etc.

7.2.1.1.29 VideoCollector (Class)

The VideoCollector interface is a generic abstract interface including VideoSink objects

(e.g. video monitors) and BridgeCircuit objects. Both VideoSink and BridgeCircuit objects

collect video from a VideoProvider, but only VideoSink objects are true destination

endpoints for video feeds which a typical user would have direct interaction with.

BridgeCircuit VideoCollector objects are merely an intermediate step in a VideoRoute

which eventually provides video ultimately to the VideoSink object(s) at the end of the

route(s).

CHART R7 Detailed Design 7-39 03/02/2010

7.2.1.1.30 VideoFabric (Class)

The VideoFabric is implemented by a class which represents a "video fabric", that is a

collection of VideoTransmissionDevice objects on a common "fabric" across which video

can be created directly. This includes any collection of switch input ports and switch output

ports on a single video switch. (Note that a collection of encoder and decoder types of

VideoTransmissionDevice objects represents a different video fabric, across which video

can be routed directly. The IP encoder/decoder fabric therefore is different from other

fabrics in that it has no associated video switch.

7.2.1.1.31 VideoFabricConfig (Class)

The VideoFabricConfig structure is used to store and transmit configuration information

about a VideoFabric object.

7.2.1.1.32 VideoProvider (Class)

The VideoProvider interface is a generic abstract interface including VideoSource objects

(e.g. video cameras) and BridgeCircuit objects. Both VideoSource and BridgeCircuit

objects provide video to a VideoCollector, but only VideoSource objects are true origins of

video which a typical user would have direct interaction with. BridgeCircuit VideoProvider

objects merely pass on video provided from elsewhere in a VideoRoute.

7.2.1.1.33 VideoReceivingDevice (Class)

The VideoReceivingDevice interface is implemented by objects which can be used to

receive video from a corresponding VideoSendingDevice. A VideoReceivingDevice may

be an MPEG decoder or may be an output port on a video switch.

7.2.1.1.34 VideoRoute (Class)

This interface defines a route through CHART II video distribution system. A given

implementation of a VideoRoute may or may not be actively in use at any given time.

Routes are defined by the combinations of all bridge circuits between all pairs of switch

fabrics within the CHART II video distribution system. Routes cannot be added or deleted

or enabled or disabled by users explicitly: the routes and their status are defined implicity

by the configuration and status of bridge circuits defined in the system at any given time.

7.2.1.1.35 VideoRouteManager (Class)

The VideoRouteManager interface is implemented by a class which provides video routing

capabilities within CHART II. This router does not need to be used (in fact, cannot be

used) when the VideoSource and VideoSink are on the same switch fabric -- it is used only

to make video routes across switch fabrics. The implementation will use a set a rules to

arbitrate among requested video displays when a set of bridge circuits between one or more

pairs of switch fabrics is fully utilized. Based on the override rules implemented, a new

incoming routing request may or may not be able to be fulfilled depending upon priority,

routing guarantees, number of images viewed, ongoing camera control sessions, etc. If an

override can be granted, the overridden route(s) will be dropped in favor of the new route.

CHART R7 Detailed Design 7-40 03/02/2010

7.2.1.1.36 VideoSendingDevice (Class)

The VideoSendingDevice interface is implemented by objects which can be used to send

video to a corresponding VideoReceivingDevice. A VideoSendingDevice may be an

MPEG encoder or may be an input port on a video switch.

7.2.1.1.37 VideoSink (Class)

The VideoSink interface is implemented by objects which serve as final endpoints for video

signals, such as video monitors and streaming video receivers directly on user workstations.

Within the user interface, the VideoSink interface represents all objects on which a video

source can be placed for viewing by users.

7.2.1.1.38 VideoSinkInfo (Class)

VideoSinkInfo represent information about a VideoSink that is used by a VideoTour.

7.2.1.1.39 VideoSource (Class)

The VideoSource interface is implemented by objects which originate video signals, such

as video cameras and image generators. Within the user interface, the VideoSource

interface represents all video sources which can be put on monitors (i.e., VideoSink

objects).

The VideoSource interface includes the SharedResource interface. A VideoSource is

controlled by an Operations Center if the VideoSource is in maintenance mode, or if the

VideoSource is a camera which has an active control session up.

7.2.1.1.40 VideoSwitch (Class)

The V1500Switch interface is implemented by a class representing any V1500 Video

Switch in the CHART system. This interface provides access to configuration and status

information for the siwtch, and provides connect and disconnect functions for making and

breaking video connections.

7.2.1.1.41 VideoSwitchConfig (Class)

This represents the configuration information for a V1500 switch.

7.2.1.1.42 VideoTour (Class)

The Tour interface is implemented by a class which maintains the configuration and status

of a single tour defined within the CHART II system.

7.2.1.1.43 VideoTourConfig (Class)

The TourConfig structure is used to hold and transmit configuration information about a

given camera tour.

CHART R7 Detailed Design 7-41 03/02/2010

7.2.1.1.44 VideoTourEntry (Class)

The TourEntry structure is used to hold and transmit configuration information about a

single entry in a camera tour.

7.2.1.1.45 VideoTourFactory (Class)

The TourManager interface is implemented by a class which tracks tours defined in the

CHART II video system. It tracks the existence and configuration of tours and also tracks

the status of all tours, whether they are active or not.

7.2.1.1.46 VideoTourInfo (Class)

A structure of related information about a single VideoTour.

7.2.1.1.47 VideoTourState (Class)

The VideoTourState enumeration defines the values that can be used to indicate the status

of a VideoTour.

7.2.1.1.48 VideoTourStatus (Class)

The TourStatus structure is used to hold and transmit status information about a given

camera tour (e.g., what VideoSink objects the Tour is currently running on.

7.2.1.1.49 VideoTransmissionDevice (Class)

The VideoTransmissionDevice interface is implemented by objects representing devices

which can be used for sending and receiving video. This interface provides CHART-

standard methods for accessing status and configuration information. Specific interfaces

supporting sending and receiving inherit from this abstract base interface.

7.2.1.2 VideoHighLevel-VideoSource (Class Diagram)

This diagram shows the VideoSource side of the VideoHighLevel diagram in more detail,

adding Factories, Configuration and Status structures, exceptions, and other supporting

interface elements. In general each of the major interface objects, VideoProvider,

VideoSource, VideoCamera, and ControllableVideoCamera have a factory and

configuration and status structures used to store and transmit configuration and status

information to clients and interested server objects.

CHART R7 Detailed Design 7-42 03/02/2010

Fl ashVi deoCont rol Conf i g
Vi deoProvi derSt at us

«dat at ype»

FUTURE

Vi conSVFTCamera
«int er f ace»

Di agonal l yM ovabl e
«int er f ace»

panDir pos r ight , neg lef t
t ilt Dir pos = up, neg = down.
panDir 0 st op panning (but m aybe
cont inue t ilt ing based on t ilt Dir) ,
and vice ver sa f or t ilt Dir 0.
(adjPanTilt (t oken, 0, 1) is not equiv
t o adjTilt (t oken, 1) because t he
lat t er does not im ply com m anding
t he cam er a t o st op panning.)

Vi deoSourceSt at us
«dat at ype»

Cont rol l abl eVi deoCameraSt at us

CO HU3955Camera
«int er f ace»

*

1

SharedResourceM anager
«int er f ace»

1

1

*1

1
1

*

1

1

Preset Undef i nedExcept i on
«except ion»

EnM asseSet Resul t
«dat at ype»

Vi deoProvi derConf i g
«dat at ype»

FUTURE. This
m et hod m ay be
incor por at ed int o t he
Cont r ollableCam er a
int er f ace dir ect ly.

Vi deoSourceConf i g
«dat at ype»

Vi deoProvi derFact ory
«int er f ace»

Vi deoSourceFact ory
«int er f ace»

Vi deoCameraFact ory
«int er f ace»

Vi deoProvi der
«int er f ace»

af t er def ault Tit le ar e ext r a at t r ibut es
t hat I lef t in, m aybe used f or R2B2.

NTCI PCamera

Transf erabl eSharedResource
«int er f ace»

Vi deoSource
«int er f ace»

m _m oit or I nf o - what m onit or (s) / sit e(s) t his cam er a
is on, and f or each m onit or , if t he cam er a on t his
m onit or as par t of a t our (and which t our) .
Each ent r y is a M onit or DisplayI nf o which pr ovides
t his inf o.

Vi conSVFTPgmCmd
«enumer at ion»

Vi deoCamera
«int er f ace»

Cont rol l abl eVi deoCamera
«int er f ace»

M oni t orDi spl ayI nf o
«dat at ype»

Vi deoCameraSt at us

Vi deoDi spl ayRevokedO rg
«dat at ype»

FUTURE:
inhibit Cont r ol (inhibit
cont r ol at sit es lower
t han t his level)

FUTURE:
m _cont r olI nhibit Level
m _at Pr eset

CameraAct i onSt at e
«enumer at ion»

CameraI sCont rol l edExcept i on
«except ion»

CameraNot Cont rol l edExcept i on
«except ion»

CameraBusyExcept i on
«except ion»

1

1

*

1

1

1

1
Cont rol l i ngI nf o

«dat at ype»

1

1

*

1

1

1

1

1

1

R5
Added +m _sendingDeviceConf igs:
VideoTr ansm issionDeviceConf ig[] t o
suppor t one or m or e videoSendingDevice

FUTURE

EnM asseSet Resul t Li st
«dat at ype»

Vi deoSourceType
«enumer at ion»

How t o det ect when
t em p pr eset can be
delet ed?

FUTURE:
set Aut oI r is()
set Aut oFocus()
set Aut oColor ()
(Not e: t hese 3 will set
f or all cam er as under
t his f act or y but obviously
only f or cam er a t ypes
t hat suppor t t he
cor r esponding f unct ion.)

CameraPreset
«dat at ype»

R5
added +m _st r eam ingFlashConf ig :
VideoCont r olFlashConf ig[]
f or f lash video st r eam cont r ol

Preset Enabl ed
«int er f ace»

Vi deoCameraConf i g
«dat at ype»

M ight have t o cr eat e dif f er ent
subclasses of Cam er aPr eset
if t her e is no single way t o st or e
pr eset posit ion univer sally.

SharedResource
«int er f ace»

Cont rol l abl eVi deoCameraConf i g

r esendPr eset () - -
pr eset Num =0 m eans
r esend all st or ed pr eset s.

FUTURE. This
m et hod m ay be
incor por at ed int o
3955 and SVFT
cam er a t ypes
dir ect ly.

CO HU3955CameraSt at us
«dat at ype»

Cont rol l i ngUserI nf o
«dat at ype»

m _cont r ollingI nf o is f or cur r ent ly cont r olling oper at or
m _wouldBeAllowed - -
t r ue: O ver r ide would have been alowed
but wasn't r equest ed.
f alse: O ver r ide was r equest ed but user does not
 have suf icient pr ivilege

I f r equest t o m ove or ot her wise cont r ol
cam er a com es in while cam er a cannot
be cont r olled.

1

1

1

1

1

1

1

1

1

1

1

1

1

1

*

m _host : st r ing
por t : shor t
por t : st r ing;

+m _cam er a: VideoCam er a- old
+m _cam er aNam e: st r ing
+m _f ailur eCode: int
+m _f ailur eText : st r ing

SO URCE_TYPE_FI XED
SO URCE_TYPE_CO HU_M PC
SO URCE_TYPE_CO HU_3955
SO URCE_TYPE_VI CO N_SVFT

+m _f ailedCam er aDat a: EnM asseSet Result []

+m _r eason: st r ing

+m _nam e: st r ing
+m _com ponent Type: VideoCom ponent Type
+m _pr ovider Type: VideoPr ovider Type
+m _owningO r gI D: I dent if ier
+m _net wor kConnect ionSit e: st r ing
+m _sendingDeviceI Ds: I dent if ier []
+m _sendingDeviceConf igs: VideoTr ansm issionDeviceConf ig[]

+m _pr ovider Conf ig: VideoPr ovider Conf ig
+m _isNoVideoAvailable: boolean
+m _st r eam ingFlashConf ig : VideoCont r olFlashConf ig[]

+cr eat eVideoPr ovider (t oken, VideoPr ovider Conf ig)
+get Pr ovider I nf oList () : VideoPr ovider I nf o[]

+m _pr eset Num ber
+m _pr eset Nam e
+m _pr eset Tit le
+m _panPosit ion
+m _t ilt Post ion
+m _zoom Posit ion
+m _aut oFocus: boolean
+m _f ocusPosit ion
+m _t em por ar y: boolean

+cr eat eVideoSour ce(t okenVideoSour ceConf ig)
+get Sour ceI nf oList () : VideoSour ceI nf o[]
+get NoVideoAvailableSour ce() : VideoSour ceI nf o[]
+get NoVideoAvailableSour cesFor Fabr ic(swit chFabr icI D) : VideoSour ceI nf o[]
+get O nlineNoVideoAvailableSour ces() : VideoSour ceI nf o[]
+get O nlineNoVideoAvailableSour cesFor Fabr ic(swit chFabr icI D) : VideoSour ceI nf o[]

get Resour ces() : Shar edResour ce[]
get Cont r olledResour ces(O pCent er I D) : Shar edResour ce[]
hasCont r olledResour ces(O pCent er I D) : boolean

+m oveToPr eset (t oken, pr eset : int , onTour : boolean)
+savePr eset (t oken, pr eset : int , t it le, cm dSt at : Com m andSt at us)

+cr eat eVideoCam er a(t oken, VideoCam er aConf ig)
+get Cam er aI nf oList () : VideoCam er aI nf o[]
+get ValidRegionList () : st r ing[]
+set Aut oI r is(t oken, cam er as: VideoCam er a[] , st at e: boolean) : EnM asseSet Result List
+set Aut oFocus(t oken, cam er as: VideoCam er a[] , st at e: boolean) : EnM asseSet Result List
+set Aut oColor (t oken, cam er as: VideoCam er a[] , st at e: boolean) : EnM asseSet Result List

+m _sour ceConf ig: VideoSour ceConf ig
+m _cam er aNum ber : int
+m _deviceLocat ion: O bject Locat ion
+m _r egions: st r ing[]
+m _t m ddDeviceNam e: st r ing
+m _t m ddCCTVI m age: Tm ddCct vI m ageType
+m _t m ddCont r olType: Tm ddCam er aCont r olType
+m _t m ddLocnExt Hor izDat um : LRM SHor izont alDat um Type
+m _t m ddLocnExt LRM SLat it ude: int
+m _t m ddLocnExt LRM SLongit ude: int
+m _t m ddLocnExt Ver t Dat um : LRM SVer t icalDat um Type
+m _t m ddLocnExt LRM SHeight : int
+m _t m ddLocnExt Ver t Level: int
+m _t m ddRequest Com m ands: int
+m _st r eam ingFlashConf ig : VideoCont r olFlashConf ig[]

+get Pr ovider St at us() : VideoPr ovider St at us
+get Pr ovider Conf ig(t oken) : VideoPr ovider Conf ig
+set Pr ovider Conf ig(t oken, VideoPr ovider Conf ig)
+r em ovePr ovider (t oken)
+addDisplay(t oken, displayI nf o: M onit or DisplayI nf o)
+r em oveDisplay(t oken, displayI D)

get Cont r ollingO pCent er () : O pCent er I nf o
get O wner O r gI D() : I dent if ier

+m _cam er aConf ig: VideoCam er aConf ig
+m _cont r olDeviceConf ig: VideoCont r olDeviceConf ig
+m _t em por ar ilyUncont r ollable: boolean
+m _pollEnabled: boolean
+m _pollI nt er valCont r olledSecs: int
+m _pollI nt er valUncont r olledSecs: int
+m _enableDeviceLogging: boolean
+m _def ault Tit le
+m _m axNum Pr eset s: int
+m _pr eset s: Cam er aPr eset []
+m _def ault Pr eset Num : int t
+m _skedM oveToDef ault Pr eset Tim e: long
+m _lockO nM anualI Focus: boolean
+m _lockO nM anualI r is: boolean
+m _lockO nM anualColor : boolean
+m _lowest Cont r olHier ar chyLevel: int
+m _m axCont r olI ledTim eM ins

set Cont r ollingO pCent er (t oken, opCt r I nf o: O pCent er I nf o)

+get Sour ceSt at us() : VideoSour ceSt at us
+get Sour ceConf ig(t oken) : VideoSour ceConf ig
+set Sour ceConf ig(t oken, VideoSour ceConf ig)
+set User DisplaySt at us(t oken, boolean)
+isNoVideoAvailable() : boolean
+isDisplayable(t oken, inf o: VideoCollect or I nf o, r eason: st r ing, sour ceFabr icI D) : bool
+isRem oveable(inf o: VideoCollect or I nf o, m onit or G r oupI Ds: I dent if ier [] , r eason: st r ing) : bool
+blockToPublic(t oken, Ext endedCom m andSt at us)
+unblockToPublic(t oken)
+r evokeDisplay(t oken, r evokedO r gI Ds: I dent if ier List , Ext endedCom m andSt at us)
+unr evokeDisplay(t oken, unr evokedO r gI Ds: I dent if ier List)
+isRevokedFor (or gI d: I dent if ier)

+m _com m M ode: Com m unicat ionM ode
+m _opSt at us: O per at ionalSt at us
+m _cont r ollingO pCent er : O per at ingCent er
+m _m onit or I nf o: M onit or DisplayI nf o[]
+m _deviceSt at usChangeTim eSecs: int
+m _m onit or St at usChangeTim eSecs: int

CM D_UP
CM D_DO WN
CM D_LEFT
CM D_RI G HT
CM D_SELECT
CM D_CANCEL
CM D_AUX1
CM D_AUX2

+get Cam er aSt at us() : VideoCam er aSt at us
+get Cam er aConf igur at ion(t oken) : VideoCam er aConf ig
+set Cam er aConf igur at ion(t oken, VideoCam er aConf ig)
+isCont r ollable() : boolean
+set Locat ion(t oken: AccessToken, locat ion: O bject Locat ion)
 : void

+set Aut oFocus(t oken, boolean)
+r esendPr eset (t oken, pr eset Num : int)
+set Pr ogr am M ode(t oken)
+exit Pr ogr am M ode(t oken)
+pr ogr am Com m and(VFTPgm Cm d, count : int)
+set Color G ainSet upM ode(t oken, boolean)
+exit Adjust Color M ode(t oken)
+ent er BlueColor G ainM enu(t oken)
+ent er RedColor G ainM enut oken()
+adjBlue(t oken, boolean)
+adjRed(t oken, boolean)
+get ViconSVFTCam er aSt at us(t oken)
+set ViconSVFTCam er aConf ig()
+t oggleColor G ainM ode(t oken)
+changeLensSpeed(t oken)
+abor t (t oken)

+r equest Cont r ol(t oken, over r ideRequest ed: boolean,
 inf o: Cont r ollingI nf o, cm dSt at : Com m andSt at us)
+t er m inat eCont r ol(t oken, cm dSt at : Com m andSt at us)
+isCont r olled() : boolean
+inhibit Cont r ol(t oken, hier ar chyLevel: int)
+adjpan(t oken, dir ect ion: int)
+adjTilt (t oken, dir ect ion: int)
+adjZoom (t oken, dir ect ion: int)
+adjFocus(t oken, wher e: int)
+adjI r is(t oken, dir ect ion: int)
+set Aut oI r is(t oken, boolean)
+set Act iveTit le(t oken, t it le, lineNum : int , cm dSt at : Com m andSt at us)
+r eset Cam er a(t oken)
+pollCam er a(t oken, r ef r eshM onit or List : boolean)

+adjPanTilt (t oken, panDir , t ilt Dir)

+m _sinkI D: I dent if ier
+m _t our I D: I dent if ier
+m _t our Suspended: boolean

+m _pr ovider St at us: VideoPr ovider St at us
+m _m aint M odeUser Nam e
+m _blockedToPublic
+m _user DisplaySt at us: boolean
+m _r evokedDisplayO r gs: VideoDisplayRevokedO r g[]

+m _or gI d: I dent if ier
+m _or ganizat ion: O r ganizat ion

+m _cam er aSt at us: VideoCam er aSt at us
+m _cont r olled: boolean
+m _cont r ollingUser I nf o: Cont r ollingUser I nf o
+m _act ionSt at e: Cam er aAct ionSt at e
+m _inAut oFocusM ode: boolean
+m _inAut oI r isM ode: boolean
+m _cur r ent Tit le: st r ing
+m _last Cont r olCm dTim eSecs: long
+m _user Cont r olSt at us: boolean
+m _at Pr eset : Cam er aPr eset
+m _cont r olI nhibit Level: int

+m _sour ceSt at us: VideoSour ceSt at us

+get CO HU3955Cam er aSt at us(t oken) : CO HU3955Cam er aSt at us
+get CO HU3955Cam er aConf ig(t oken) : CO HU3955Cam er aConf ig
+set CO HU3955Cam er aConf ig(t oken, CO HU3955Cam er aConf ig)
+adjRed(t oken, dir ect ion: int)
+adjBlue(t oken, dir ect ion: int)
+set Aut oFocus(t oken, boolean)
+set Aut oColor (t oken, boolean)
+set LensFast (t oken, boolean)
+set Power O n(t oken, boolean)

NO _ACTI O N
PAN_LEFT
PAN_RI G HT
TI LT_UP
TI LT_DO WN
ZO O M _I N
ZO O M _O UT
FO CUS_FAR
FO CUS_NEAR
I RI S_O PEN
I RI S_CLO SE
SET_TI TLE
RED_PLUS
RED_M I NUS
BLUE_PLUS
BLUE_M I NUS

+m _cont r ollableSt at us: Cont r ollableVideoCam er aSt at us
+m _power O n: boolean
+m _inAut oColor M ode: boolean
+m _lensSpeedFast : boolean
+m _cur r ent Tit le2: st r ing

+m _opCent er I nf o: O pCent er I nf o
+m _user I nf o: Cont r ollingUser I nf o

+m _cont r ollingI nf o: Cont r ollingI nf o
+m _wouldBeAllowed: boolean

+m _m onit or G r oupI D: I dent if ier
+m _user Nam e: st r ing

+m _r eason: Cam er aNot Cont r olledReason
+m _act ionSt at e: Cam er aAct ionSt at e
+m _cont r ollingI nf o: Cont r ollingI nf o

+m _r eason: st r ing
+m _act ionSt at e: Cam er aAct ionSt at e

Figure 7-5 VideoHighLevel-VideoSource (Class Diagram)

7.2.1.2.1 CameraActionState (Class)

This enumeration identifies what action the camera is currently performing (if any).

7.2.1.2.2 CameraBusyException (Class)

This exception is thrown if an atttempt to issue an immediate mode camera control

command (such as pan, tilt, etc.) is issued while the camera is performing a long-running

command (such as a moveToPresetCommand or a setTitleCommand). This indicates to the

operator that the camera is momentarily busy, and the operator should try the action again

in a few seconds, or when the camera image on the monitor shows that the long-running

request has completed.

7.2.1.2.3 CameraIsControlledException (Class)

This exception is thrown if a request to control a camera is denied because the camera is

already controlled, perhaps because a race condition where another operator has established

control just before the request.

CHART R7 Detailed Design 7-43 03/02/2010

7.2.1.2.4 CameraNotControlledException (Class)

This is an exception thrown if an attempt to issue a camera control command is issued when

the camera is not currently controlled by the requester. This is most likely to occur

immediately after a control override, in cases where the client has not received or processed

the override event yet.

7.2.1.2.5 CameraPreset (Class)

This structure stores information about a preset configured for a camera.

7.2.1.2.6 COHU3955Camera (Class)

The COHU3955Camera interface is implemented by objects representing COHU model

3055 video cameras. It extends the ControllableVideoCamera interface by adding methods

unique to the COHU 3955 cameras (unique within the universe of camera types planned for

implementation within CHART II).

7.2.1.2.7 COHU3955CameraStatus (Class)

The COHUCameraStatus structure is used to hold status information about COHUCamera

objects at the COHUCamera level.

7.2.1.2.8 ControllableVideoCamera (Class)

The ControllableVideoCamera interface is implemented by objects representing

controllable video cameras within the CHART II system. The ControllableVideoCamera

interface represents a controllable video camera as opposed to an uncontrollable,

immovable VideoCamera. Current plans call for classes to represent a COHU 3955

camera, Vicon SVFT camera, and NTCIP-compliant camera, and there are interfaces

defined for each of these subtypes of ControllableVideoCamera. The

ControllableVideoCamera interface includes all methods common to the two known types

of video cameras currently in use by MDSHA, although it is likely to contain a superset of

methods which would be implemented by the entire universe of all video cameras which

could someday be used. This interface may have to be refined in the event that future

brands or models of video cameras might be incorporated under CHART II, but it is an

appropriate set of methods for the present day. Current plans call for classes to represent a

COHU 3955 camera, Vicon SVFT camera, and NTCIP-compliant camera.

7.2.1.2.9 ControllableVideoCameraConfig (Class)

The ControllableVideoCameraConfig is used to hold and transmit configuration

information about ControllableVideoCamera objects at the ControllableVideoCamera level.

7.2.1.2.10 ControllableVideoCameraStatus (Class)

The ControllableVideoCameraStatus is used to hold and transmit status information about

ControllableVideoCameraStatus objects at the ControllableVideoCamera level.

CHART R7 Detailed Design 7-44 03/02/2010

7.2.1.2.11 ControllingInfo (Class)

The ControllingInfo structure contains information about the entity controlling (or

requesting to control) a VideoCamera.

7.2.1.2.12 ControllingUserInfo (Class)

The ControllingUserInfo structure contains information about the monitor group and user

of the entity controlling (or requesting to control) a VideoCamera.

7.2.1.2.13 DiagonallyMovable (Class)

The DiagonallyMovable interface is implemented by VideoCamera-enabled classes which

can be moved diagonally in addition to standard orthogonal pan and tilt commands. A

particular implementation may support 45-degree movements only, in which case the

panDir and tiltDir parameters are +/- 1 to indicate direction only, or an implementation may

support 360 degrees of motion, in which case, in addition to signs, the relative ratios of the

parameters indicate the percent of movement proportionally in the pan/tilt directions. This

interface is expected to be implemented beyond R2B2.

7.2.1.2.14 EnMasseSetResult (Class)

This structure will be used to communicate failures in setting a number of cameras to auto

iris, auto focus, or auto color balance. It specifies results for one camera which failed.

7.2.1.2.15 EnMasseSetResultList (Class)

This structure will be used to communicate failures in setting a number of cameras to auto

iris, auto focus, or auto color balance. It specifies results for all cameras which failed.

(Cameras which succeeded are not included in this list.)

7.2.1.2.16 VideoControlFlashConfig (Class)

This structure stores configuration information about a flash streaming server configuration

that is displaying a camera's image.

7.2.1.2.17 MonitorDisplayInfo (Class)

This structure holds details about each monitor on which the VideoProvider is currently

being displayed.

7.2.1.2.18 NTCIPCamera (Class)

The NTCIPCamera interface is implemented by objects which support the NTCIP standard

for CCTV cameras.

7.2.1.2.19 PresetEnabled (Class)

The PresetEnabled interface is implemented by VideoCamera-enabled classes which can

store and move to presets. The savePreset() method saves the current camera position as

CHART R7 Detailed Design 7-45 03/02/2010

the preset position. This interface is expected to be implemented in R2B2.

7.2.1.2.20 PresetUndefinedException (Class)

This exception is thrown when an attempt is made to move to an undefined preset.

7.2.1.2.21 SharedResource (Class)

The SharedResource interface is implemented by any object that must always have an

operations center responsible for the disposition of the resource while the resource is in use.

7.2.1.2.22 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared

resources. Implementing classes must be able to provide a list of all shared resources under

their management. Implementing classes must also be able to tell others if there are any

resources under its management that are controlled by a given operations center.

7.2.1.2.23 TransferableSharedResource (Class)

The TransferrableSharedResource interface is implemented by any object that must always

have an operations center responsible for the disposition of the resource while the resource

is in use but may also be allowed to transfer control of that resource to another operations

center.

7.2.1.2.24 ViconSVFTCamera (Class)

The ViconSVFTCamera interface is implemented by a class representing the Vicon

Surveyor VFT model video camera. (As there are no other Vicon brand cameras used

within CHART II, there is no base ViconCamera interface representing all Vicon-brand

cameras. For one thing, there would be no known basis for allocating methods to the base

interface and the VFT interface.)

7.2.1.2.25 ViconSVFTPgmCmd (Class)

The ViconSVFTPgmCmd enueration defines the values that can be used in the

programCommand() method of the ViconSVFTCamera interface.

7.2.1.2.26 VideoCamera (Class)

The VideoCamera interface is implemented by objects representing video cameras within

the CHART II system. Classes implementing this interface (and nothing below this

interface would be fixed (non-controllable) video cameras. The VideoCamera interface

includes the GeoLocatable interface, to someday allow for advanced features such as

automatic identification of cameras near traffic events, automatic pointing of cameras to

traffic events, etc.

CHART R7 Detailed Design 7-46 03/02/2010

7.2.1.2.27 VideoCameraConfig (Class)

The VideoCameraConfig structure is used to hold configuration information about

VideoCamera objects at the VideoCamera level. Further details about lower-level

VideoCamera subclasses are provided by subclasses of VideoCameraConfig. Contains a

detailed location information.

7.2.1.2.28 VideoCameraFactory (Class)

The GenericVideoCameraFactory interface is implemented by factory classes responsible

for creating, maintaining, and controlling a collection of GenericVideoCamera objects.

7.2.1.2.29 VideoCameraStatus (Class)

The VideoCameraStatus structure is used to hold status information about VideoCamera

objects at the VideoCamera level. Further details about lower-level VideoCamera

subclasses are provided by subclasses of VideoCameraStatus.

7.2.1.2.30 VideoDisplayRevokedOrg (Class)

This structure is used to store information about an organization for which display of the

associated camera has been revoked.

7.2.1.2.31 VideoProvider (Class)

The VideoProvider interface is a generic abstract interface including VideoSource objects

(e.g. video cameras) and BridgeCircuit objects. Both VideoSource and BridgeCircuit

objects provide video to a VideoCollector, but only VideoSource objects are true origins of

video which a typical user would have direct interaction with. BridgeCircuit VideoProvider

objects merely pass on video provided from elsewhere in a VideoRoute.

7.2.1.2.32 VideoProviderConfig (Class)

The VideoProviderConfig structureis used to hold configuration information about

VideoProvider objects at the VideoProvider level. The object contains the provider name,

provider type, video component type, owning org, network connection site, sending device

IDs and sending device configurations. Further details about lower-level VideoProvider

subclasses are provided by subclasses of VideoProviderConfig.

7.2.1.2.33 VideoProviderFactory (Class)

The VideoProviderFactory interface is implemented by factory classes responsible for

creating and maintaining a collection of VideoProvider objects.

7.2.1.2.34 VideoProviderStatus (Class)

The VideoProviderStatus structure is used to hold status information about VideoProvider

objects at the VideoProvider level. Further details about lower-level VideoProvider

subclasses are provided by subclasses of VideoProviderStatus.

CHART R7 Detailed Design 7-47 03/02/2010

7.2.1.2.35 VideoSource (Class)

The VideoSource interface is implemented by objects which originate video signals, such

as video cameras and image generators. Within the user interface, the VideoSource

interface represents all video sources which can be put on monitors (i.e., VideoSink

objects).

The VideoSource interface includes the SharedResource interface. A VideoSource is

controlled by an Operations Center if the VideoSource is in maintenance mode, or if the

VideoSource is a camera which has an active control session up.

7.2.1.2.36 VideoSourceConfig (Class)

The VideoSourceConfig structure is used to hold configuration information about

VideoSource objects at the VideoSource level. It contains a video provider configuration, a

boolen NVA indicator, and a video control flash configuration. Further details about lower-

level VideoSource subclasses are provided by subclasses of VideoSourceConfig.

7.2.1.2.37 VideoSourceFactory (Class)

The VideoSourceFactory interface is implemented by factory classes responsible for

creating, maintaining, and controlling a collection of VideoSource objects.

7.2.1.2.38 VideoSourceStatus (Class)

The VideoSourceStatus structure is used to hold status information about VideoSource

objects at the VideoSource level. Further details about lower-level VideoSource subclasses

are provided by subclasses of VideoSourceStatus.

7.2.1.2.39 VideoSourceType (Class)

This enumeration identifies the various types of cameras which can exist in the system.

The fixed type is for all non-controllable cameras.

CHART R7 Detailed Design 7-48 03/02/2010

7.2.1.3 VideoControl (Class Diagram)

R7 adds
NTCI P_CAM ERA

1

1

Vi deoCol l ect orConf i g
«st r uct »

1 1
Vi deoRecei vi ngDevi ceI nf o

«st r uct »

Vi deoRout eConf i g
«st r uct »

Vi deoRout eI nf o
«st r uct »

1

1

Sw i t chEvent Type
«enumer at ion»

Vi deoSw i t chI nf o
«st r uct »

1

Vi deoRout eSt at us
«st r uct »

Vi deoSw i t chConf i g
«st r uct »

1

1

1

Vi deoCol l ect or I nf o
«st r uct »

1

1

1
1

1

1

1

1

Vi deoSw i t chSt at us
«st r uct »

1

Si nkSourcePai rVC
«st r uct »

Vi deoCont rol Devi ceConf i g
«st r uct »

1

1

1

1

CO NTRO L_I P

1

1
CO NTRO L_CO M _PO RT

Vi deoCont rol CmdProcConf i g
«st r uct »

11
CO NTRO L_CO M M AND_PRO CESSO R

1

1

1

1

I dent i f i er

VideoFabr icAdded
or

VideoFabr icConf igChanged

1

1

VideoSwit chSt at usChanged

1 1VideoSwit chAdded
or

VideoSwit chConf igChanged

1

1

VideoFabr icDelet ed

M oni t orDi spl ayI nf o
«st r uct »

Vi deoProvi der
«int er f ace»

Vi deoProvi derFact ory
«int er f ace»

Vi deoSendi ngDevi ceSt at us
«st r uct »

1

1

Vi deoRecei vi ngDevi ceSt at us
«st r uct »

1

1

Vi deoFabri cConf i g
«st r uct »

Vi deoCol l ect orSt at us
«st r uct »

1

1

1
1

Vi deoRout e
«int er f ace»

Vi deoCol l ect orFact ory
«int er f ace»

Vi deoCont rol Devi ce
«int er f ace»

Vi deoTransmi ssi onDevi ce
«int er f ace»

Encoder

Vi deoCol l ect or
«int er f ace»

CommEnabl ed
«int er f ace»

Decoder
«int er f ace»

1

Uni quel yI dent i f i abl e
«int er f ace»

O verr i deNot Request edExcept i on
«except ion»

Cannot O verr i deExcept i on
«except ion»

1

Vi deoRecei vi ngDevi ce
«int er f ace»

Vi deoSendi ngDevi ce
«int er f ace»

Vi deoRout eM anager
«int er f ace»

Vi deoSw i t chFact ory
«int er f ace»

1

Vi deoCompressi onType
«enumer at ion»

CodecVi deoConnect i on
«st r uct »

CameraCont rol Devi ceM odel
«enumer at ion»

Vi deoDevi ceType
«enumer at ion»

Vi deoTransmi ssi onM edi um
«enumer at ion»

Vi deoTransmi ssi onDevi ceConf i g
«st r uct »

1 1

11

1 1

1

1

1

1

Vi deoCont rol EncoderConf i g
«st r uct »

Vi deoCont rol CO M Port Conf i g
«st r uct »

Vi deoCont rol Fl ashConf i g
«st r uct »

Vi deoCont rol Devi ceSt at us
«st r uct »

1

1

Vi deoComponent Type
«enumer at ion»

1
1

Vi deoFabri cI nf o
«st r uct »

Vi deoCol l ect orType
«enumer at ion»

Vi deoSw i t chM odel
«enumer at ion»

CameraCont rol Devi ceType
«enumer at ion»

Vi deoProvi derI nf o
«st r uct »

1

1

1

1

Cont rol l i ngI nf o
«st r uct »

Cont rol l i ngUserI nf o
«st r uct »

Vi deoProvi derConf i g
«st r uct »

11

*1

Vi deoProvi derType

*

1

1

I dent i f i er

1

1

VideoSwit chDelet ed

Vi deoSw i t chConf i gEvent I nf o
«st r uct »

1

1

1

1
Sw i t chEvent

«union»

Vi deoSw i t chSt at usEvent I nf o
«st r uct »

Vi deoFabri cConf i gEvent I nf o
«st r uct »

1 1
Vi deoTransmi ssi onDevi ceSt at us

«st r uct »

1

Vi deoProvi derSt at us
«st r uct »

This class diagr am is new f or R7
 it capt ur es exist ing classes f r om pr evious
r eleases.

SharedResourceM anager
«int er f ace»

Vi deoFabri c
«int er f ace»

Vi deoSw i t ch
«int er f ace»

+get Rout eI nf oList () : VideoRout eI nf oList
+connect (t oken, VideoPr ovider I nf o, VideoPr ovider Conf ig,
 VideoCollect or I nf o, VideoCollect or Conf ig,
 over r ideRequest ed, t est O nly, doNot Block, xCm dSt at) : boolean
+disconnect (t oken, VideoPr ovider I nf o, VideoCollect or I nf o,
 cm dSt at) : boolean
+set Cam er aCont r olled(t oken, cam er aI D, m onit or G r oupI D)
+set Cam er aNot Cont r olled(t oken, cam er aI D)

+m _sinkSour cePair s : SinkSour cePair List VC

get St at us() : VideoRout eSt at us
get Conf ig(t oken) : VideoRout eConf ig
set I m age(t oken, sour ceI D)

+m _sinkI D : I dent if ier
+m _sour ceI D : I dent if ier

+m _r eason : st r ing

+cr eat eVideoSwit ch(t oken, VideoSwit chConf ig)
+cr eat eVideoFabr ic(t oken)
+get Swit chList () : VideoSwit chI nf oList
+get VideoFabr icI nf oList () : VideoFabr icI nf oList

+m _r out eI D : I dent if ier
+m _r out e : VideoRout e

+m _car r yingI m ageI D : I dent if ier
+m _isO nline : boolean

+m _nam e : st r ing
+m _br idgeCir cuit I Ds : I dent if ier

+get St at us() : VideoSwit chSt at us
+get Conf igur at ion(t oken) : V1500Cwit chConf ig
+set Conf igur at ion(t oken, V1500Swit chConf ig)
+r em ove(t oken)
+connect (t oken, sr c: Swit chI nput Por t , dest : Swit chO ut put Por t)
+disconnect (t oken, dest : Swit chO ut put Por t)
+r eloadSwit chConnect ions(t oken)

SWI TCH_V1500

+m _nam e: st r ing
+m _m odel: VideoSwit chM odel
+m _swit chFabr icI D: I dent if ier
+m _inPor t s: shor t []
+m _out Por t s: shor t []
+m _owningO r dI D: I dent if ier
+m _net wor kConnect ionSit e Net wor kConnect ionSit e

t akeO f f line(AccessToken, Com m andSt at us) : void
put O nline(AccessToken, Com m andSt at us) : void
put I nM aint enanceM ode(AccessToken, Com m andSt at us) : void
get Com m M ode() : Com m unicat ionM ode

+m _com m M ode: Com m unicat ionsM ode
+m _opSt at us: O per at ionalSt at us

+m _swit chI D : I dent if ier
+m _swit ch : VideoSwit ch

+get Conf ig(t oken) : VideoFabr icConf ig
+set Conf ig((t oken, videoFabr icConf ig)
+r em ove(t oken)
+addSwit ch(t oken, swit chI D)
+delet eSwit ch(t oken, swit chI D)

swit chRef : VideoSwit ch
swit chI D : I dent if ier
conf ig : VideoSwit chConf ig

+m _f abr icI D: I dent if ier
+m _f abr ic : VideoFabr ic

VideoFabr icAdded
VideoSwit chAdded
VideoFabr icDelet ed
VideoSwit chDelet ed
VideoFabr icConf igChanged
VideoSwit chConf igChanged
VideoFabr icSt at usChanged
VideoSwit chSt at usChanged

+swit chI D : I dent if ier
+st at us : VideoSwit chSt at us

get Collect or I nf oList () : VideoCollect or I nf oList

discr im inat or : Swit chEvent Type
f abr icConf igI nf o : VideoFabr icConf igEvent I nf o
swit chConf igI nf o : VideoSwit chConf igEvent I nf o
f abr icI D : I dent if ier
swit chI D : I dent if ier
swit chSt at usI nf o : VideoSwit chSt at usEvent I nf o

+m _com m M ode : Com m unicat ionM ode
+m _opSt at us : O per at ionalSt at us
+m _pr ovider I D : I dent if ier
+m _sour ceI D : I dent if ier
+m _st at usChangeTim eSecs : long
+m _last Cont act Tim eSecs : long

+get Collect or St at us() : VideoCollect or St at us
+get Collect or Conf ig(t oken) : VideoCollect or Conf ig
+r em oveCollect or (t oken)
+connect ReceivingToSendingDevice(byt e[] , VideoPr ovider I nf o,
 byt e[] , Com m andSt at us, boolean,
 St r ingHolder) : boolean
+disconnect ReceivingFm SendingDevice(byt e[] , Com m andSt at us,
 boolean, St r ingHolder) : boolean

get I D()
get Nam e()

f abr icRef : VideoFabr ic
f abr icI D : I dent if ier
conf ig : VideoFabr icConf ig

+m _nam e : st r ing
+m _com ponent Type : VideoCom ponent Type
+m _collect or Type : VideoCollect or Type
+m _owningO r gI D : I dent if ier
+m _net wor kConnect ionSit e : Net wor kConnect ionSit e
+m _r eceivingDeviceI D : I dent if ier
+m _r eceivingDeviceConf ig : VideoTr ansm issionDeviceConf ig

+m _collect or I D : I dent if ier
+m _collect or : VideoCollect or
+m _t ype : VideoCollect or Type

+m _nam e: st r ing
+m _owningO r gI D : I dent if ier
+m _net wor kConnect ionSit e : Net wor kConnect ionSit e
+m _t r ansm issionM edium : VideoTr ansm issionM edium
+m _swit chI D: I dent if ier

get DeviceSt at us() : VideoTr ansm issionDeviceSt at us
get DeviceConf ig(byt e[]) : VideoTr ansm issionDeviceConf ig

VI DEO _CO LLECTO R
VI DEO _SI NK
VI DEO _M O NI TO R
BRI DG E_CI RCUI T_I NPUT

get Resour ces() : Shar edResour ceList
get Cont r olledResour ces(I dent if ier opCt r I D) : Shar edResour ceList
hasCont r olledResour ces(I dent if ier opCt r I D) : boolean

get SendingDeviceSt at us() : VideoSendingDeviceSt at us

VI DEO _I P
VI DEO _V1500

+r eceive(init ial: int , int er char : int ,
 m axDur at ion: int)

get ReceivingDeviceSt at us() : VideoReceivingDeviceSt at us
connect Fr om (byt e[] , byt e[] ,
 VideoTr ansm issionDeviceConf ig) : boolean
disconnect Fr om (byt e[] ,
 VideoTr ansm issionDeviceConf ig) : boolean
disconnect (byt e[]) : boolean

get Cont r olDeviceSt at us() : VideoCont r olDeviceSt at us
get Cont r olDeviceConf ig(t oken) : VideoCont r olDeviceConf ig
t er m inat eCont r ol(dr opAddr ess) : boolean
send(dat a, init ialTim eout M s, int er Char Tim eout M s, m axReadDur at ionM s) : Byt eAr r ay

+m _gener alSt at us : VideoTr ansm issionDeviceSt at us
+m _r eceiver I Ds : I dent if ier List

m _opSt at us : O per at ionalSt at us

+m _gener alSt at us : VideoTr ansm issionDeviceSt at us
+m _sender I D : I dent if ier List

+m _m edium Type : VideoTr ansm issionM edium
+m _deviceType : VideoDeviceType
+m _m odelType : Cam er aCont r olDeviceM odel
+m _nam e : st r ing
+m _por t : long
+m _videoPor t : shor t
+m _codecConnect ions : CodecVideoConnect ionList
+m _videoFabr icI D : I dent if ier
+m _swit chI D : I dent if ier

+m _DeviceI D : I dent if ier
+m _device : VideoReceivingDevice

+m _opSt at us : O per at ionalSt at us

+get Pr ovider St at us() : VideoPr ovider St at us
+get Pr ovider Conf ig(t oken) : VideoPr ovider Conf ig
+r em ovePr ovider (t oken)
+addDisplay(t oken, displayI nf o) : void
+r em oveDisplay(t oken, displayI D)
+addConnect edCollect or (t oken, collect or I D)
+r em oveConnect edCollect or (t oken, collect or I D)

+m _user I nf o : Cont r ollingUser I nf o
+m _opCent er I nf o : O pCent er I nf o

+m _com ponent Type : VideoCom ponent Type
+m _nam e : St r ing
+m _net wor kConnect ionSit e : St r ing
+m _owningO r gI D : byt e[]
+m _pr ovider Type : VideoPr ovider Type
+m _sendingDeviceConf ig : VideoTr ansm issionDeviceConf ig[]
+m _sendingDeviceI Ds : byt e[] []

+m _host : st r ing
+m _por t : shor t
+m _passwor d : st r ing

VI DEO _SENDI NG _DEVI CE
VI DEO _RECEI VI NG _DEVI CE

 get Pr ovider I nf oList () : VideoPr ovider I nf oList

O THER
CO RETEC_M PEG 4
I M PATH_M PEG 2

+m _por t Nam e : st r ing
+m _com m Por t Conf ig : Com m Por t Conf ig

+m _m onit or G r oupI D: I dent if ier
+m _user Nam e: st r ing

m _pr ovider I D : I dent if ier
m _pr ovider : VideoPr ovider
m _t ype : VideoPr ovider Type

+m _com pr essionType : VideoCom pr essionType
+m _videoM ult icast Addess : st r ing
+m _videoM ult icast Por t : long

VI DEO _PRO VI DER
VI DEO _SO URCE
VI DEO _CAM ERA
CO NTRO LLABLE_VI DEO _CAM ERA
NTCI P_CAM ERA
CO HU_3955_CAM ERA
VI CO N_SVFT_CAM ERA
BRI DG E_CI RCUI T_O UTPUT

+m _nam e : st r ing
+m _por t : long
+m _com m Por t Conf ig : Com m Por t Conf ig
+m _m odelType : Cam er aCont r olDeviceM odel

+m _com m M ode: Com m unicat ionM ode
+m _opSt at us: O per at ionalSt at us
+m _cont r ollingO pCent er : O pCent er I nf o
+m _m onit or I nf o: M onit or DisplayI nf o
+m _collect or I Ds : I dent if ier List
+m _deviceSt at usChangeTim eSecs: int
+m _m onit or St at usChangeTim eSecs: int

CO NTRO L_I P
CO NTRO L_CO M _PO RT
CO NTRO L_CO M M AND_PRO CESSO R

VI DEO _SO URCE_CO M PO NENT
VI DEO _SI NK_CO M PO NENT
VI DEO _BRI DG E_CI RCUI T

CO M PRESSI O N_M PEG 4
CO M PRESSI O N_M PEG 2

discr im inat or : Cam er aCont r olDeviceType
encoder Conf ig : VideoCont r olEncoder Conf ig
com Por t Conf ig : VideoCont r olCO M Por t Conf ig
cm dPr ocConf ig : VideoCont r olCm dPr ocConf ig

m _sinkI D : I dent if ier
m _t our I D : I dent if ier
m _t our Suspended : boolean

+m _id I dent if ier

Figure 7-6 VideoControl (Class Diagram)

7.2.1.3.1 CameraControlDeviceModel (Class)

This enum lists the models of camera control devices used.

7.2.1.3.2 CameraControlDeviceType (Class)

This enum lists the types of control devices which can be used to control video cameras.

This enum is used as the discriminator in the VideoControlDeviceConfig union.

7.2.1.3.3 CannotOverrideException (Class)

This exception is thrown when attempt is made to display an image with requires a route,

but the route could not be made due to higher priority routes already existing.

7.2.1.3.4 CodecVideoConnection (Class)

This structure defines configuration data pertaining to one specific CODEC transmission

stream.

7.2.1.3.5 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put

online, or put in maintenance mode through a standard interface. These states typically

CHART R7 Detailed Design 7-49 03/02/2010

apply only to field devices. When a device is taken offline, it is no longer available for use

through the system and automated polling (if any) is halted. When put online, a device is

again available for use by TrafficEvents within the system and automated polling is enabled

(if applicable). When put in maintenance mode a device is offline (i.e., cannot be used by

TrafficEvents), and maintenance commands appropriate for the particular type of device are

allowed to help in troubleshooting.

7.2.1.3.6 ControllingInfo (Class)

The ControllingInfo structure contains information about the entity controlling (or

requesting to control) a VideoCamera.

7.2.1.3.7 ControllingUserInfo (Class)

The ControllingUserInfo structure contains information about the monitor group and user

of the entity controlling (or requesting to control) a VideoCamera.

7.2.1.3.8 Decoder (Class)

This interface describes the Decoder interface. The decoder includes the

VideoReceivingDevice interface.

7.2.1.3.9 Encoder (Class)

The Encoder interface is implemented by classes representing any type of video encoder.

The Encoder interface includes both the Codec and the VideoSendingDevice interfaces,

which means in addition to providing forwarding of video, it also is used to send video

camera control commands and return responses to a camera control process.

7.2.1.3.10 Identifier (Class)

Wrapper class for a CHART2 identifier byte sequence. This class will be used to add

identifiable objects to hash tables and perform subsequent lookup operations.

7.2.1.3.11 MonitorDisplayInfo (Class)

This object is used to identify a video sink currently displaying video from a video

provider. A List of these structures is stored in a video provider's status.

7.2.1.3.12 OverrideNotRequestedException (Class)

his exception is thrown when attempt is made to display an image with requires a route, but

the route could not be made due to all routes already in use. The implication is that if

override had been requested, the route would be likely to be created (which would override

another route, or routes). Information is provided about what monitor(s) would be likely to

be overridden, along with what source each monitor is viewing.

CHART R7 Detailed Design 7-50 03/02/2010

7.2.1.3.13 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared

resources. Implementing classes must be able to provide a list of all shared resources under

their management. Implementing classes must also be able to tell others if there are any

resources under its management that are controlled by a given operations center. The

shared resource manager is also responsible for periodically monitoring its shared resources

to detect if the operations center controlling a resource doesn't have at least one user logged

into the system. When this condition is detected, the shared resource manager must push an

event on the ResourceManagement event channel to notify others of this condition.

7.2.1.3.14 SinkSourcePairVC (Class)

This structure contains a VideoSink ID and VideoSource ID pair.

7.2.1.3.15 SwitchEvent (Class)

This structure stores configuration information used to find and use the video control device

used to send/receive camera control commands/responses to/from a camera.

7.2.1.3.16 SwitchEventType (Class)

This enum lists the events related to switch control (switches and fabrics) that are pushed

on a switch event channel through the CORBA event service. The data pushed with these

events is defined in the SwitchEvent union.

7.2.1.3.17 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the

system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

7.2.1.3.18 VideoCollector (Class)

The VideoCollector interface is a generic abstract interface including VideoSink objects

(e.g. video monitors) and BridgeCircuit objects. Both VideoSink and BridgeCircuit objects

collect video from a VideoProvider, but only VideoSink objects are true destination

endpoints for video feeds which a typical user would have direct interaction with.

BridgeCircuit VideoCollector objects are merely an intermediate step in a VideoRoute

which eventually provides video ultimately to the VideoSink object(s) at the end of the

route(s).

7.2.1.3.19 VideoCollectorConfig (Class)

This structure defines configuration data common to all video collectors.

7.2.1.3.20 VideoCollectorFactory (Class)

This interface defines an object that is used to manage video collector objects in the system.

There is no create operation because VideoCollector is an abstract interface.

CHART R7 Detailed Design 7-51 03/02/2010

7.2.1.3.21 VideoCollectorInfo (Class)

A structure of related information about a single VideoCollector.

7.2.1.3.22 VideoCollectorStatus (Class)

This structure defines the data included in the status of a video collector.

7.2.1.3.23 VideoCollectorType (Class)

This enum lists the different types of VideoCollector in the system.

7.2.1.3.24 VideoComponentType (Class)

This enum lists the video compnent types supported by the software.

7.2.1.3.25 VideoCompressionType (Class)

This enum lists the models of camera control devices used.

7.2.1.3.26 VideoControlCmdProcConfig (Class)

This structure stores configuration information about a command processor based video

control device used to transmit camera control commands/responses to/from the camera.

This is the structure in a VideoControlDeviceConfig if its CameraControlDeviceType

discriminator is CONTROL_COMMAND_PROCESSOR.

7.2.1.3.27 VideoControlCOMPortConfig (Class)

This structure stores configuration information about a COM port based video control

device used to transmit camera control commands/responses to/from the camera. This

structure is in a VideoControlDeviceConfig if its CameraControlDeviceType discriminator

is CONTROL_COM_PORT.

7.2.1.3.28 VideoControlDevice (Class)

This interface is used to represent a video control device in the field. A video control

device is used to communicate camera control commands to a camera, and return responses

to the requester.

7.2.1.3.29 VideoControlDeviceConfig (Class)

This structure stores configuration information used to find and use the video control device

used to send/receive camera control commands/responses to/from a camera.

7.2.1.3.30 VideoControlDeviceStatus (Class)

This structure defines status data common to a video control device, i.e. ,a device used to

send/receive camera control commands/responses to/from the camera.

CHART R7 Detailed Design 7-52 03/02/2010

7.2.1.3.31 VideoControlEncoderConfig (Class)

This structure stores configuration information about an IP encoder based video control

device used to transmit camera control commands/responses to/from the camera. This

structure is in a VideoControlDeviceConfig if its CameraControlDeviceType discriminator

is CONTROL_IP.

7.2.1.3.32 VideoControlFlashConfig (Class)

This structure stores configuration information about a flash streaming server configuration

that is displaying a camera's image.

7.2.1.3.33 VideoDeviceType (Class)

This enum lists the types video transmission devices that a video transmission device can

be.

7.2.1.3.34 VideoFabric (Class)

The VideoFabric interface is implemented by a class representing any Video Fabric in the

CHART system. This interface provides access to configuration for the video fabric.

7.2.1.3.35 VideoFabricConfig (Class)

This class contains the configuration information for a given VideoFabric.

7.2.1.3.36 VideoFabricConfigEventInfo (Class)

This struct is used for passing event data related to a video fabric configuration when a

video fabric is added to the system or undergoes a configuration change.

7.2.1.3.37 VideoFabricInfo (Class)

A structure of related information about a single VideoFabric.

7.2.1.3.38 VideoProvider (Class)

The VideoProvider interface is a generic abstract interface including VideoSource objects

(e.g. video cameras) and BridgeCircuit objects. Both VideoSource and BridgeCircuit

objects provide video to a VideoCollector, but only VideoSource objects are true origins of

video which a typical user would have direct interaction with. BridgeCircuit VideoProvider

objects merely pass on video provided from elsewhere in a VideoRoute.

7.2.1.3.39 VideoProviderConfig (Class)

This structure defines configuration data common to all video sources.

7.2.1.3.40 VideoProviderFactory (Class)

This interface defines an object that is used to manage video provider objects in the system.

There is no create operation because VideoProvider is an abstract interface.

CHART R7 Detailed Design 7-53 03/02/2010

7.2.1.3.41 VideoProviderInfo (Class)

A structure of related information about a single VideoProvider.

7.2.1.3.42 VideoProviderStatus (Class)

The VideoProviderStatus structure is used to hold and transmit status information about

VideoProvider objects at the VideoProvider level. Further details about lower-level

VideoProvider subclasses are provided by subclasses of VideoProviderStatus.

7.2.1.3.43 VideoProviderType (Class)

This enum lists the different types of VideoProvider in the system.

7.2.1.3.44 VideoReceivingDevice (Class)

The VideoReceivingDevice interface is used to represent a video receiving device in the

field. These devices are used to actually connect a video provider to a video collector. The

system contains an instance of this interface for each video receiving device.

7.2.1.3.45 VideoReceivingDeviceInfo (Class)

A tuple of related information about a single VideoReceivingDevice.

7.2.1.3.46 VideoReceivingDeviceStatus (Class)

This structure defines status data for video receiving devices.

7.2.1.3.47 VideoRoute (Class)

This interface defines the operations for a video route.

7.2.1.3.48 VideoRouteConfig (Class)

This structure defines configuration data for a VideoRoute.

7.2.1.3.49 VideoRouteInfo (Class)

A structure of related information about a single VideoRoute.

7.2.1.3.50 VideoRouteManager (Class)

The VideoRouteManager interface is implemented by a class which provides video routing

capabilities within CHART II. This router does not need to be used (in fact, cannot be

used) when the VideoSource and VideoSink are on the same switch fabric -- it is used only

to make video routes across switch fabrics.

7.2.1.3.51 VideoRouteStatus (Class)

This structure defines status data for a video route.

CHART R7 Detailed Design 7-54 03/02/2010

7.2.1.3.52 VideoSendingDevice (Class)

The VideoSendingDevice interface is implemented by objects which can be used to send

video to a corresponding VideoReceivingDevice. A VideoSendingDevice may be an

MPEG encoder or may be an input port on a video switch.

7.2.1.3.53 VideoSendingDeviceStatus (Class)

The VideoSendingDeviceStatus structure is used to store generic status information

common to all types of VideoSendingDevice objects. Subclasses will provide additional

information specific to the type of object/interface referenced at that level of the

VideoTransmissionDevice inheritance tree at that point.

7.2.1.3.54 VideoSwitch (Class)

The V1500Switch interface is implemented by a class representing any V1500 Video

Switch in the CHART system. This interface provides access to configuration and status

information for the siwtch, and provides connect and disconnect functions for making and

breaking video connections.

7.2.1.3.55 VideoSwitchConfig (Class)

This represents the configuration information for a V1500 switch (R2B2).

7.2.1.3.56 VideoSwitchConfigEventInfo (Class)

This struct is used for passing event data related to a video switch configuration when a

video switch is added to the system or undergoes a configuration change.

7.2.1.3.57 VideoSwitchFactory (Class)

The VideoSwitchFactory interface is used to create and manage VideoSwitch objects and

SwitchFabric objects in the system.

7.2.1.3.58 VideoSwitchInfo (Class)

A structure of related information about a single VideoSwitch.

7.2.1.3.59 VideoSwitchModel (Class)

This enum lists the models video switches a VideoSwitch can be.

7.2.1.3.60 VideoSwitchStatus (Class)

This represents the status information for a V1500 switch (R2B2).

7.2.1.3.61 VideoSwitchStatusEventInfo (Class)

This struct is used for passing event data related to a video switch status when a video

switch undergoes a status change.

CHART R7 Detailed Design 7-55 03/02/2010

7.2.1.3.62 VideoTransmissionDevice (Class)

The VideoTransmissionDevice interface is used to represent a video transmision device in

the field (either a video sending device or a video receiving device). These devices are used

to actually connect a video provider to a video collector. The system contains an instance

of this interface for each video transmission device.

7.2.1.3.63 VideoTransmissionDeviceConfig (Class)

This structure defines configuration data common to all video transmission devices.

7.2.1.3.64 VideoTransmissionDeviceStatus (Class)

This structure defines status data common to all video transmission devices.

7.2.1.3.65 VideoTransmissionMedium (Class)

This enum lists the video transmission media supported by the software.

7.3 Camera Control Module

7.3.1 Class Diagrams

7.3.1.1 CameraControlModule (Class Diagram)

This diagram shows the classes with comprise the CameraControlModule. The

CameraControlModule is an installable module that serves the camera-type objects and

factories to the rest of the CHART II system. This diagram shows how the implementation

of these CORBA interfaces relys on other supporting classes to perform their functions.

The CameraControlModule is responsible for serving all VideoSource objects including

controllable cameras, fixed cameras, No Video Available sources, and potentially any other

image generators, etc. The COHU3955CameraImpl, viconSVFTCameraImpl, and

NTCIPCameraImpl are the primary classes operating in this module. These objects provide

all access to the camera status and configuration. The CameraControlModule also includes

factory implementations responsible for providing lists of cameras and other such objects to

interested clients.

CHART R7 Detailed Design 7-56 03/02/2010

DataPortEnabled
«interface»

NTCIPCameraConfig
«struct»

1

Added in R7

In R7, added timeout based receive method

NTCIPCameraStatus
«struct»

11

1

1

NTCIPCameraImpl

NTCIPCamera
«interface»

Added in R7

1

1

1

1

1

R7: Added
NTCIP Camera
funtions

NTCIPCameraProtocolHdlr

NTCIPCameraPositionReference
NTCIPCameraCommands

1
1

1

1

DBConnectionManager

1

java.util.Timer

*

CameraControlDB

1

1

1

1

1

PushEventSupplier

1

CheckForAbandonedCameraTask
1

Encoder

java.util.TimerTask

1

1

1

CameraConfigValidation

VideoProviderImpl

1

1

1

CameraControlModuleProperties

1

1

1

ControllableVideoCameraImpl

1

ViconSVFTCameraStatus
«struct»

1

ControllableVideoCamera
«interface»

*

ControllableCameraFactoryImpl

1

VideoCameraFactory
«interface»

1

PollCameraTask

CameraControlModule

COHU3955CameraImpl

1

1

RevokeDisplayCmd

1

BlockToPublicCmd

RevokeControlCmd

1

1

1

1

COHU3955CameraStatus
«struct»

ViconSVFTCameraImp

UniquelyIdentifiable
«interface»

PutCameraOnlineCmd

1

1

1 1

1

1

1
1

1 1

1

1

1

1

1

1

1

1

1

CameraCommand
«struct»

RequestCameraOverrideCmd

TakeCameraOfflineCmd

TerminateControlCmd

VideoProviderStatus
«struct»

1

1

ControllableVideoCameraStatus
«struct»

VideoCameraStatus
«struct»

1

1

1

1

1

1

1

CameraProtocolHdlr

COHUProtocolHdlr

CameraControlComPort

1

1

11

MoveToPresetCmd

FullTourStatusUpdateFlag - says whether to push status
updates for camera status updates for changes to the
active monitor list pertaining to tours only. Probably
default to true unless that causes too much traffic.

FullTourOpsLoggingFlag - same except for writing to Ops
Log. Probably default to false unless we need it for
troubleshooting a problem, as this would be a lot of excess
Ops Log entries.

CameraControlDevice

VideoCameraImpl

VideoCamera
«interface»

VideoSource
«interface»

VideoProvider
«interface»

CommEnabled
«interface»

VideoSourceStatus
«struct»

gets module props using

creates1
1

creates1

CommandQueue

QueueableCommand
«interface»

RequestCameraControlCmd

DisplayImageCmd

ControllingInfo
«struct»

1

1

COHU3955Camera
«interface»

VideoSourceConfig
«struct»

1

ServiceApplicationModule
«interface»

1

1

1

ServiceApplication
«interface»

CommandProcessor
«interface»

ViconSVFTProtocolHdlr

1

ControllableVideoCameraConfig
«struct»

VideoCameraConfig
«struct»VideoProviderConfig

«struct»

getID()
getName()

takeOffline(AccessToken, CommandStatus):void
putOnline(AccessToken, CommandStatus):void
putInMaintenanceMode(AccessToken, CommandStatus):void
getCommMode() :CommunicationMode

+createVideoCamera(token, config) : VideoCamera
+getCameraInfoList() : VideoCameraInfo[]
+getValidRegionList() : String[]

+createCamera(byte[], VideoProviderConfig):void
+getProviderInfoList() : VideoProviderInfo[]
+getSourceInfoList() : VideoSourceInfo[]
+getNoVideoAvailableSources() : VideoSource[]
+getNoVideoAvailableSourcesForFabric(switchFabricID) : VideoSourceInfo[]
+getOnlineNoVideoAvailableSources() : VideoSourceInfo[]
+getOnlineNoVideoAvailableSourcesForFabric(switchFabricID) : VideoSourceInfo[]
+getCameraInfoList() : VideoCameraInfo[]
+getValidRegionList() : String[]
+getControllableCameraInfoList() : ControllableVideoCameraInfo[]
+getID() : Identifier
+getName() : String
+getResources() : SharedResource[]
+getControlledResources(opCtrID) : SharedResource[]
+hasControlledResources(opCtrID) : boolean
checkForAbandonedCameraObjects()
+checkForCameraTimeout()
findOpCenterName(opCtrID) : String
-getOpCenterNamesFromTrader()
#getAllowSimulation() : boolean
getLogFlags() : boolean[]
getHostName() : String
getCameraPushEventSupplier() : PushEventSupplier
getProperties() : CameraControlModuleProperties
pollCameraObjects()
shutdown() : boolean
-addCameraTypesToTrader()
-alarmIfNoLoggedInUsers(Identifier, String)
-getControllingOpCenters() : Hashtable
+doGetNoVideoAvailableSources(switchFabricID,boolean) : VideoSourceInfo[]
-logProd(String, String)
#logStackProd(String,String,Exception)
-log(String, String, String)
#logLockDone(String)
#logLockRcvd(String)
#logLockRqst(String)
-opLog(token,String,int,String,String)
#setSimulationFlag(String, String) : boolean
-createDummyCamera()
findVideoSink(Identifier) : VideoSink
findMonitorGroup(Identifier) : MonitorGroup
-getVideoSinkRefsFromTrader()
-getMonitorGroupRefsFromTrader()

-m_allowSimulation : boolean
-m_providerImplVect : Vector
-m_cameraImplVect : Vector
-m_controllableImplVect : Vector
-m_db : CameraControlDB
-m_cameraPushEventSupplier : PushEventSupplier
-m_cameraStatusLogFile : LogFile
-m_hostName : String
-m_idObj : Identifier
-m_lockFactory : Object[]
-m_logFlags : boolean[]
-m_name : String
m_opCenterNames : Hashtable
-m_resMgmtPushEventSupplier : PushEventSupplier
-m_sharedResMonInt : int
-m_shutdown : boolean
-m_svcApp : ServiceApplication
-m_timeDownSecs : int
-m_props : CameraControlModuleProperties
-m_validRegions : String[]
m_videoSinkRefs : Hashtable
m_monitorGroupRefs : Hashtable

+getProviderStatus():VideoProviderStatus
+getProviderConfig(token):VideoProviderConfig
+removeProvider(token)
+addDisplay(token, displayInfo):void
+removeDisplay(token, displayID)
+addConnectedCollector(token, collectorID)
+removeConnectedCollector(token, collectorID)

+m_componentType : VideoComponentType
+m_name : String
+m_networkConnectionSite : String
+m_owningOrgID : byte[]
+m_providerType : VideoProviderType
+m_sendingDeviceConfig : VideoTransmissionDeviceConfig[]
+m_sendingDeviceIDs : byte[][]

+getSourceStatus():VideoSourceStatus
+getSourceConfig(Identifier):VideoSourceConfig
+setSourceConfig(Identifier,VideoSourceConfig,CommandStatus)
+setUserDisplayStatus(Identifier,boolean)
+blockToPublic(token,ExtendedCommandStatus)
+unblockToPublic(token)
+setRevokeDisplayOrgs(token,revokedOrgIDs, xCmdStat)
+isNoVideoAvailable():boolean
+isDisplayable(Identifier,VideoCollectorInfo,reason:string):boolean
+isRemovable(VideoCollectorInfo,monitorGroupID[],reason:string):boolean

initialize(ServiceApplication app):boolean
getVersion() : ComponentVersion
traderGroupUpdated() : void
shutdown(ServiceApplication app):boolean

ServiceApplication m_svcApp;
DefaultServiceApplicationProperties m_props;

+m_providerConfig:VideoProviderConfig
+m_maintainingOrgID : Identifier
+m_isNoVideoAvailableSource: boolean
+m_streamingFlashConfig : VideoControlFlashConfig[]

+m_sourceConfig:VideoSourceConfig
+m_cameraNumber:int
+m_location:ObjectLocation
+m_regions:string[]
+m_displayOnIntranetMap : boolean
+m_displayOnPublicMap : boolean
+m_tmddDeviceName:string
+m_tmddCCTVImage:TmddCctvImageType
+m_tmddControlType:TmddCameraControlType
+m_tmddLocnExtHorizDatum:LRMSHorizontalDatumType
+m_tmddLocnExtLRMSLatitude:int
+m_tmddLocnExtLRMSLongitude:int
+m_tmddLocnExtVertDatum:LRMSVerticalDatumType
+m_tmddLocnExtLRMSHeight:int
+m_tmddLocnExtVertLevel:int
+m_tmddRequestCommands:int

+isControllable():boolean
+getCameraStatus():VideoCameraStatus
+getCameraConfig(token):VideoCameraConfig
+setCameraConfig(token,VideoCameraConfig)
+setLocation(token, ol)

+getAllowSimulation() : boolean
+getSimulatedCommsSuccessRate() : int
+getLogFlags() : String
+getPollTimerDelayMillis() : int
+getRecoveryTimerDelaySecs() : int
+getSharedResMonInt() : int
+getCameraControlResponseTimeOutMilli() : int
+getCameraControlSessionTimeOutSecs() : int
+getLastNStateChangeMarginalDenominator() : int
+getLastNStateChangeMarginalNumerator() : int
+getRecentStateChangeCount() : int
+getRecentStateChangeTimeSecs() : int
+getCOHU3955ValidTitleCharacters() : String

-m_props : Properties
-m_defaults : Properties

schedule() : void
cancel() : void

+getControllableCameraStatus():ControllableVideoCameraStatus
+getControllableCameraConfig(token):ControllableVideoCameraConfig
+setControllableCameraConfig(token, config, cmdStat)
+setUserControlStatus(token, state)
+requestControl(token,overrideRequested:boolean,info:ControllingInfo,cmdStat:CommandStatus)
+terminateControl(token)
+setRevokeControlOrgs(token, revokedOrgIDs, cmdStat)
+isControlled():boolean
+getValidTitleChars():string
+adjpan(token, direction:int)
+adjTilt(token, direction:int)
+adjZoom(token, direction:int)
+adjFocus(token, where:int)
+adjIris(token, direction:int)
+setAutoIris(token, boolean)
+adjRed(token, direction)
+adjBlue(token, direction)
+setActiveTitle(token,title,lineNum:in,cmdStat:CommandStatust)
+resetCamera(token)
+pollCarmera(token)
+moveToPreset(token, preset, forTour)
+savePreset(token, camPreset, cmdStat)
+deletePreset(token, presetNum, cmdStat)

+initialize(ServiceApplication) : boolean
+shutdown(ServiceApplication) : boolean
-createEventChannel(String) : PushEventSupplier
-createCameraFactory(int) : boolean
-addCameraFactoryTypesToTrader() : void
+getVersion() : ComponentVersion

-m_svcApp : ServiceApplication
-m_db : CameraControlDB
-m_cameraEventSupplier : PushEventSupplier
-m_resMgmtEventSupplier : PushEventSupplier
-m_cameraFactory : CameraFactoryImpl
-m_props : CameraControlModuleProperties
-m_timer : Timer

+validateCfg(byte[], COHU3955CameraConfig, COHU3955CameraConfig
, CommandStatus, boolean[], VideoProviderStatus, boolean)
+validateCfg(byte[], ControllableVideoCameraConfig,
ControllableVideoCameraConfig, CommandStatus, boolean[],
VideoProviderStatus, boolean)
+validateCfg(byte[], ViconSVFTCameraConfig, ViconSVFTCameraConfig,
CommandStatus, boolean[], VideoProviderStatus, boolean)
+validateCfg(byte[], VideoCameraConfig, VideoCameraConfig,
CommandStatus, boolean[], VideoProviderStatus, boolean)
+validateCfg(byte[], VideoProviderConfig, VideoProviderConfig,
CommandStatus, boolean[], VideoProviderStatus, boolean)
+validateCfg(byte[], VideoSourceConfig, VideoSourceConfig,
CommandStatus, boolean[], VideoProviderStatus, boolean)
+validateCfg(byte[], NTCIPCameraConfig, NTCIPCameraConfig,
CommandStatus, boolean[], VideoProviderStatus, boolean)
#logLockDone(String)
#logLockRcvd(String)
#logLockRqst(String)
#verifyCommMode(CommunicationMode, String, CommandStatus)
-log(String, String, String)

+CheckForAbandonedCameraTask
 (ControllableCameraFactoryImpl)
+run()

-m_controllableCameraFact:
 ControllableCameraFactoryImpl

run()

#createNTCIPCameraImpl(Identifier, NTCIPCameraConfig, NTCIPCameraStatus)
 : NTCIPCameraImpl
+deleteCamera(Identifier):void
+deleteCameraWithConnection(Identifier, Connection): boolean
-getCameraConfig(Identifier): CameraConfig;
-getCameraList(): VideoProviderImpl[];
-getCameraStatus(Identifier): CameraStatus;
-getCOHU3955CameraConfig(Identifier): COHU3955CameraConfig;
-getCOHU3955CameraStatus(Identifier):COHU3955CameraStatus;
-getControllableCameraConfig(Identifier): ControllableVideoCameraConfig;
-getControllableCameraPreset(Identifier, int):ControllableVideoCameraPreset
-getControllableCameraPresetList(Identifier): CameraPreset[];
-getControllableCameraStatus(Identifier): ControllableVideoCameraStatus;
-getDeviceConfig(Identifier)VideoTransmissionDeviceConfig;()
-getDeviceStatus(Identifier): VideoTransmissionDeviceStatus;
+getNTCIPCameraConfig(Identifier) : NTCIPCameraConfig
-getNTCIPCameraConfigWithConnection(Identifier, Connection) :
 NTCIPCameraConfig
+getNTCIPCameraStatus(Identifier) : NTCIPCameraStatus
-getNTCIPCameraStatusWithConnection(Identifier, Connection) :
 NTCIPCameraStatus
-getProviderConfig(Identifier): VideoProviderConfig;
-getProviderStatus(Identifier): VideoProviderStatus;
-getRegionList(): String[];
-getSourceConfig(Identifier):VideoSourceConfig;
-getSourceStatus(Identifier): CideoSourceStatus;
-getViconSVFTCameraConfig(Identifier): ViconSVFTCameraConfig;
+insertCohu3955Camera(Identifier,COHU3955CameraConfig):
 COHU3955CameraImpl;
+insertNTCIPCamera(Identifier, NTCIPCameraConfig) : NTCIPCameraImpl
+insertViconSVFTCamera(Identifier, ViconSVFTCameraConfig):
 ViconSVFTCameraImpl;
+insertVideoCamera(Identifier, VideoCameraConfig):VideoCameraImpl;
+insertVideoSourceCamera(Identifier, VideoSourceConfig): VideoCameraImpl;
setCameraData (Identifier, CameraData)void;()
setCameraStatus(Identifier, VideoCameraStatus)void;()
setCOHU3955CameraConfig(Identifier, COHU3955CameraConfig)void;()
-setCOHU3955CameraConfigWithConnection(Identifier,
 COHU3955CameraConfig, Connection)void;()
setCOHU3955CameraStatus(Identifier, COHU3955CameraStatus)void;()
setControllableCameraConfig(Identifier, ControllableVideoCameraConfig)void;()
-setControllableCameraConfigWithConnection(Identifier,
 ControllableVideoCameraConfig, Connection)void;()
setControllableCameraPreset(Identifier, ControllableVideoCameraPreset)void;()
setControllableCameraStatus(Identifier, ControllableVideoCameraStatus)void;()
setFactoryImpl(ControllableCameraFactoryImpl)void;()
+setNTCIPCameraConfig(Identifier, NTCIPCameraConfig)
-setNTCIPCameraConfigWithConnection
 (Identifier, NTCIPCameraConfig, Connection)
+setNTCIPCameraStatus(Identifier, NTCIPCameraStatus)
-setNTCIPCameraStatusWithConnection
 (Identifier, NTCIPCameraStatus, Connection)
setRevoke(Identifier, VideoSourceStatus)void;()
-setRevokeWithConnection(Identifier, VideoSourceStatus, Connection)void;()
setSourceStatus(Identifier, VideoSourceStatus)void;()
setViconSVFTCameraConfig(Identifier, ViconSVFTCameraConfig)void;()
-setViconSVFTCameraConfigWithConnection(Identifier,
 ViconSVFTCameraConfig,Connection)void;()
setViconSVFTCameraStatus(Identifier, ViconSVFTCameraStatus)void;()
setVideoCameraConfig(Identifier, VideoCameraConfig)void;()
-setVideoCameraConfigWithConnection(Identifier, VideoCameraConfig,
 Connection)void;()
setVideoProviderConfig(Identifier, VideoProviderConfig)void;()
-setVideoProviderConfigWithConnection(Identifier, VideoProviderConfig,
 Connection)void;()
setVideoProviderStatus(Identifier, VideoProviderStatus)void;()
setVideoSourceConfig(Identifier, VideoSourceConfig)void;()
-setVideoSourceConfigWithConnection(Identifier, VideoSourceConfig,
 Connection)void;()

-m_dbConnMgr : DBConnectionManager2
-m_cameraFactoryImpl : ControllableCameraFactoryImpl
-m_cameraPushEventSupplier : PushEventSupplier
-m_networkConnectionSite : String
-m_svcApp : ServiceApplication

+blockToPublic(byte[], ExtendedCommandStatus):void
+blockToPublicImpl(
 ExtendedCommandStatus):ImageRemovalResult
+clearTimers():void
+getCameraConfig(token):VideoCameraConfig
+getCameraStatus():VideoCameraStatus
+getControllingOpCenter():OpCenterInfo
+getLocationDesc():string
+getLocationProfiles():LocationProfiles[]
+getOwningOrgID():Identifier
+getSourceConfig(Identifier):VideoSourceConfig
+getSourceStatus():VideoSourceStatus
+isControllable():boolean
+isDisplayable(token,VideoCollectorInfo,string):boolean
+isNoVideoAvailable():boolean
+isRemovable(VideoCollectorInfo,monitorGroupID[],string)
#pushStatus(desc,warnTxt):boolean
#persistData(desc,warnTxt):boolean
#persistStatus(desc,warnTxt):boolean
+revokeDisplayImpl(byte[][],
 ExtendedCommandStatus):ImageRemovalResult
+setCameraConfig(token,VideoCameraConfig)
+setLocation(token:byte[], location:ObjectLocation):void
+setControllingOpCenter(token,OpCenterInfo)
+setRevokeDisplayOrgs(byte[], byte[][],
 ExtendedCommandStatus):void
+setSourceConfig(token,VideoSourceConfig)
+setUserDisplayStatus(token,boolean)
+remove(token)
+unblockToPublic(byte[]):void
-checkControllingOpCenterName()
+clearDeviceForOfflineMode(token,CommandStatus)
createPOATie():Servant
debugPrintConfig(String,String,VideoSourceConfig)
debugPrintConfig(String,String,VideoCameraConfig)
debugPrintData(String,String,CameraData)
debugPrintStatus(String,String,VideoSourceStatus)
debugPrintStatus(String,String,VideoCameraStatus)
getServiceTypeName():String
getProviderType():VideoProviderType
#initDefaultCameraData():CameraData
#initDefaultCameraStatus():VideoCameraStatus
#initDefaultSourceStatus():VideoSourceStatus
isNoVideoAvailableSource():boolean
-enablePublicFlashVideo()
-disablePublicFlashVideo()

#m_sourceConfig:VideoSourceConfig
#m_cameraConfig:VideoCameraConfig
#m_sourceStatus:VideoSourceStatus
#m_cameraStatus:VideoCameraStatus
#m_cameraData:CameraData
m_displayTimer:Timer
m_displayTimerRunning:boolean
-m_isVideoSourceOnly:boolean
m_publicTimer:Timer
m_publicTimerRunning:boolean
m_revokeDisplayTask:RevokeDisplayTask
m_revokePublicTask:RevokePublicTask

+getConnection() : java.sql.Connection
+getCurrentOpenCursors() : int
+releaseConnection() : void
+shutdown() : void
+verifyDBInitialized() : boolean

+m_cameraConfig:VideoCameraConfig
+m_controlDeviceID:Identifier
+m_controlDeviceConfig : VideoControlDeviceConfig
+m_pollEnabled:boolean
+m_pollIntervalControlledSecs: long
+m_pollIntervalUncontrolledSecs:long
+m_enableDeviceLogging : boolean
+m_defaultPresetNum:short
+m_defaultTitle : string

+send(byteMessage: byte[]
+receive(initial:int, interchar:int, maxDuration:int)

+run()
+PollCameraTask(ControllableCameraFactoryImpl)

-m_controllableCameraFact : ControllableCameraFactoryImpl

+addConnectedCollector(byte[], byte[])
+debugPrintColMonInfo(String, String)
+debugPrintConfig(String, String, VideoProviderConfig)
+debugPrintStatus(String, String, VideoProviderStatus)
+getCommMode()
+getProviderName()
+shutdown()
#clearConnectedCollectors(String)
#clearConnectedCollectorsIfNec()
#clearDeviceForOfflineMode(byte[], CommandStatus)
#clearDisplays(String)
#cmdStatusFailure(CommandStatus, String)
#cmdStatusFailureMaybe(CommandStatus, String, boolean)
#cmdStatusSuccess(CommandStatus, String)
#cmdStatusSuccessMaybe(CommandStatus, String, boolean)
#cmdStatusUpdate(CommandStatus, String)
#equalCommMode(CommunicationMode)
#findOpCenterName(byte[])
#findVideoSink(Identifier)
#getAllowSimulation()
#getOpStatus()
#getProviderConfig()
#getProviderType()
#getSimulationFlag(String, String)
getSvcApp()
#initializeLogFlags(String)
#isSimulated()
#log(String, String, String)
#logLockDone(String)
#logLockRcvd(String)
#logLockRqst(String)
#logProd(String, String)
#logStackProd(String, String, Exception)
#moveToDefaultPresetIfPossible()
#opLog(byte[], String, int, String, String)
#persistAndPushStatus(String, StringBuffer)
#persistStatus(String, StringBuffer)
#pushStatus(String, StringBuffer)
#setOpStatus(OperationalStatus)
#sleep(int)
#terminateControlIfNecessary()
#verifyAccess(byte[], int, String, String, CommandStatus)
#verifyAccess(byte[], int[], String, String, CommandStatus)
#verifyCommMode(CommunicationMode, String, CommandStatus)
#verifyNoResourceConflict(byte[], String, CommandStatus)
-cmdStatusCompleted(CommandStatus, String, boolean)
-commModeToString(CommunicationMode)
-convertIDToVideoSink(byte[])
-opStatusToString(OperationalStatus)
-updateMonitorStatusChangeTime()
-verifyCommMode(CommunicationMode, String, CommandStatus, boolean)

-m_dateFmtYYYYMMDDHHMMSS : SimpleDateFormat
-m_networkConnectionSite : String
#m_cmdQueue : CommandQueue
#m_createLogFlag : String
#m_factory : ControllableCameraFactoryImpl
#m_lockConfig : Object[]
#m_lockName : Object[]
#m_lockStatus : Object[]
#m_logFlags : boolean[]
#m_proConfig : VideoProviderConfig
#m_providerConfig : VideoProviderConfig
#m_providerStatus : VideoProviderStatus
#m_pushEventSupplier : PushEventSupplier
#m_svcApp : ServiceApplication
#m_systemRight : FunctionalRightTyp
#m_systemToken : byte[]
-m_any : Any
-m_collectorIDSet : HashSet
-m_idObj : Identifier
-m_mdiSet : HashSet
-m_simulateComms : boolean
-m_simulationAllowed : boolean
$SIMULATE_CAMERA_COMMS_KEYWORD : String

#pushStatus(String, StringBuffer)
#persistStatus(String, StringBuffer)
+adjFocus(byte[], int)
+adjIris(token, int)
+adjPan(token, int)
+adjTilt(token, int)
+adjZoom(token, int)
+clearTimers():void
+getControllableCameraConfig(token):ControllableVideoCameraConfig
+getControllableCameraStatus():ControllableVideoCameraStatus
+isControllable():boolean
+moveToPreset(token,short,boolean)
+pollCamera(token, boolean):boolean
+remove(token)
+requestControl(token,boolean,ControllingInfo,CommandStatus)
+resetCamera(token)
+revokeControlmpl(byte[][], CommandStatus):boolean
+savePreset(token,short,String)
+setActiveTitle(token,String,short,CommandStatus)
+setAutoIris(token,boolean)
+setControllableCameraConfig(token, ControllableVideoCameraConfig)
+setRevokeControlOrgs(byte[], byte[][], CommandStatus):void
+setUserControlStatus(token, boolean)
+terminateControl(token, CommandStatus)
+clearDeviceForOfflineMode(token, CommandStatus)
+isRemovable(VideoCollectorInfo,monitorGroupID[],StringHolder):boolean
+isControlled():boolean
#isControlledBy(token)
#terminateControlImpl(token,CommandStatus)
debugPrintConfig(String,String,ControllableVideoCameraConfig)
debugPrintStatus(String, String, ControllableVideoCameraStatus)
#getControllableCameraConfig():ControllableVideoCameraConfig
#verifyController(byte[], CommandStatus)
+requestCameraControlImpl(token,CommandStatus,ControllingInfo)
#isDisplayedLocally(ControllingInfo,token):int
#checkControllable(token,CommandStatus int)
#hasCommandRunning()
+requestCameraOverrideImpl(byte[], CommandStatus, ControllingInfo)
#stopCameraIfNecessary(String)
pollIfNecessary()
#verifyCommModeNotOffline(String, CommandStatus)
-setPollInProgress(boolean)
#updateCameraTitle(int, String)
-updateLastAttemptedPollTime()
-updateLastCommandTime()
#updateLastContactTime()
-updateLastSuccessfulPollTime()
#handleOpStatus(OperationalStatus,boolean,CommandStatus,
 String,boolean,boolean):boolean
#updateCmdTimeSecs()
#convertToOperationalStatus(CameraOperationalStatus):OperationalStatus
#refreshMonitorList()
+populateValidTitleCharacters(String)
+isTitleValid(String):boolean
+getValidTitleChars():String

#m_controllableConfig:ControllableVideoCameraConfig
#m_controllableStatus:ControllableVideoCameraStatus
#m_maxTitleLength:int
#m_maxTitleLineNum:int
#m_protocolHandler:CameraProtocolHdlr
#m_lockOperation:Object[]
m_controlTimer:Timer
m_controlTimerRunning:boolean
m_lastHardOpStatus:OperationalStatus
-m_lastNPossibleStateChanges : LinkedList
m_numActualStateChanges:int
m_numPossibleStateChanges:int
m_simulatedCommsSuccessRate:int
-m_recentStateChanges:LinkedList
m_recentStateChangeCnt:int
m_recentStateChangeTimeSecs:int
m_revokeControlTask:RevokeControlTask
-m_pollInProgress:boolean
#m_validCOHU3955Characters:Hashtable

+m_header:byte []
+m_headerResponse:byte[]
+m_command:byte[]
+m_commandResponse:byte[]
+m_expectedLength:int
+m_commandType:int

+initialize():boolean
+connect():boolean
+disconnect():boolean
+shutdown():boolean
+send(byteMessage:byte []):byte []
+send(messages:ArrayList, id:token):boolean
+receive(byte [], int):void
+receive(initial:int, interchar:int,
maxDuration:int)
+receive(data:ArrayList, length:ArrayList, id:token)
+getActualBytesRead():int
+setConfiguration(COHU3955CameraConfig)
 :boolean

+receive(initial:int, interchar:int,
 maxDuration:int)

+initialize():boolean
+connect():boolean
+disconnect():boolean
+shutdown():boolean
+setCameraId():void
+setCameraName():void
+getInitialCommands()

m_cameraId:int
m_cameraName:String

+m_cameraStatus:VideoCameraStatus
+m_controlled:boolean
+m_controllingUserInfo:ControllingUserInfo
+m_actionState:CameraActionState
+m_inAutoFocusMode:boolean
+m_inAutoIrisMode:boolean
+m_currentTitle:string
+m_atPresetNum:short
+m_definedPresets : CameraPreset[]
+m_lastControlCmdTimeSecs:long
+m_userControlStatus:boolean

+adjPan(direction:int):CameraOperationalStatus
+adjTilt(direction:int):CameraOperationalStatus
+adjZoom(direction:int):CameraOperationalStatus
+adjFocus(where:int):CameraOperationalStatus
+adjIris(boolean):CameraOperationalStatus
+adjBlue(direction:int):CameraOperationalStatus
+adjRead(direction:int):CameraOperationalStatus
+setAutoIris(boolean):CameraOperationalStatus
+setAutoFocus(boolean):CameraOperationalStatus
+setAutoColor(boolean):CameraOperationalStatus
+setLensFast(boolean):CameraOperationalStatus
+resetCamera():CameraOperationalStatus
+setActiveTitle(title, lineNum):CameraOperationalStatus
+poll():CameraOperationalStatus
#buildCommand():byte[]
#getReturnedStatus(byte[]:cameraStatus)
+miscCommand(string, int):CameraOperationalStatus
-receiveACKorNAKStatus():CameraOperationalStatus
#sendACK(byte)
-sendCommandForData():CameraOperationalStatus
#sendMessage(byte[]):CameraOperationalStatus
+setTitleEnabled(boolean):CameraOperationalStatus
+setTitleToTop(boolean):CameraOperationalStatus
+shutdown():boolean
+stopAll()

+receive(initial:int, interchar:int,
 maxDuration:int)

+getCOHU3955CameraStatus()
 :COHU3955CameraStatus
+getCOHU3955CameraConfig(Identifier)
 :COHU3955CameraConfig
+setCOHU3955CameraConfig(Identifier,
 COHU3955CameraConfig)
+setAutoFocus(token,boolean)
+setAutoColor(token,boolean)
+setLensFast(token,boolean)
+setPowerOn(token,boolean)

+addCommand(CommandTransaction)
+dequeue()
+executeCommand()
+receive(Identifier)
+receiveResponse(byte[])
+run()
+sendCommandToComPort(CameraCommand)
+stopThread()

m_commands : List
m_comport : CameraControlComPort
m_comportName : String
m_enableDeviceLogging : boolean
m_lock : Object
m_responseLock : Object
m_responses : Hashtable
m_simulated : boolean
m_stopThread : boolean

+adjPan(direction:int):CameraOperationalStatus
+adjTilt(direction:int):CameraOperationalStatus
+adjTilt(direction:int):CameraOperationalStatus
+adjFocus(where:int):CameraOperationalStatus
+adjIris(where:int):CameraOperationalStatus
+setAutoIris(boolean):CameraOperationalStatus
+setActiveTitle(string title, int lineNum):CameraOperationalStatus
+poll():CameraOperationalStatus
+setAutoFocus(boolean):CameraOperationalStatus
+setAutoColor(boolean):CameraOperationalStatus
+setAutoIris(boolean):CameraOperationalStatus
+moveToPreset(Preset:int):CameraOperationalStatus
+savePreset(number:int):CameraOperationalStatus
#handleException(exception:Exception):void
#sendMessage(cmd:OID, payLoad:Object):void
#sendMessageForData(cmd:OID, payLoad:Object):string
+setTitleEnabled(isEnabled:boolean):CameraOperationalStatus
+setTitleToTop(isTItleTop:boolean):CameraOperationalStatus
+setCameraPower(isPowerOn:boolean):CameraOperationalStatus
#getZoomPosition():int
#updateVariableControlSpeed(zoomPosition:int):void
#setLabelText(num:int, title:int):void

-m_cohu3955Config:COHU3955CameraConfig
-m_cohu3955Status:COHU3955CameraStatus

+m_sourceStatus:VideoSourceStatus

execute()
interrupted()

+execute()
+interrupted()

-m_cVideoSinkImpl : VideoSinkImpl
-m_cmdStat : CommandStatus
-m_videoProviderInfoSrc : VideoProviderInfo
-m_bTour : boolean
-m_token : token

+adjPan(direction:int):CameraOperationalStatus
+adjTilt(direction:int):CameraOperationalStatus
+adjZoom(direction:int):CameraOperationalStatus
+adjFocus(where:int):CameraOperationalStatus
+adjIris(boolean):CameraOperationalStatus
+setAutoIris(boolean):CameraOperationalStatus
+setActiveTitle(string title, int lineNum):CameraOperationalStatus
+poll():CameraOperationalStatus
+setAutoFocus(boolean):CameraOperationalStatus
+setAutoColor(boolean):CameraOperationalStatus
+setLensFast(boolean):CameraOperationalStatus
+setAutoIris(boolean):CameraOperationalStatus
+resetCamera():CameraOperationalStatus
+setPosition(Command, Value):int
+getPosition():Position
+moveToPosition(Preset):int
+savePreset(number):int

+m_providerStatus:VideoProviderStatus
+m_maintModeUserName:string
+m_blockedToPublic:boolean
+m_userDisplayStatus:boolean
+m_revokedDisplayOrgID[]
+m_revokedControlOrgIDs[]

+command(cmdIndex:int):OID

m_commands[]:OID

+m_userInfo :ControllingUserInfo
+m_opCenterInfo : OpCenterInfo

-m_requesterToken:Token
-m_cmdStat:CommandStatus
-m_source:VideoCameraImpl
-m_presetNum:int

+execute()
+interrupted()

-m_camera : ControllableVideoCameraImpl
-m_cmdStat : CommandStatus
-m_token : token
-m_info : ControllingInfo

+m_controllableStatus:ControllableVideoCameraStatus
+m_inAutoColorMode:boolean
+m_powerOn:boolean
+m_lensSpeedFast:boolean
+m_currentTitle2:string

+execute()
+interrupted()

-m_camera : ControllableVideoCameraImpl
-m_cmdStat:CommandStatus
-m_token : token
-m_info : ControllingInfo

getPositionCommand():byte[]
NTCIPCameraPositionReference(mode:byte,speedAndDirection:byte)

m_operationMode:byte
m_speedAndDirection: byte

+m_commMode:CommunicationMode
+m_opStatus:OperationalStatus
+m_controllingOpCenter:OpCenterInfo
+m_monitorInfo:MonitorDisplayInfo
+m_collectorIDs : IdentifierList
+m_deviceStatusChangeTimeSecs:int
+m_monitorStatusChangeTimeSecs:int

+execute()
+interrupted()

-m_camera:ControllableVideoCameraImpl
-m_cmdStat:CommandStatus
-m_token:Token

+adjBlue(byte[],int):void
+adjMenuHorizontally(byte[],int):void
+adjMenuVertically(byte[],int):void
+adjRed(byte[],int):void
+getValidTitleChars():String
+getViconSVFTCameraConfig(byte[]):ViconSVFTCameraConfig
+getViconSVFTCameraStatus():ViconSVFTCameraStatus
#persistStatus(String,StringBuffer):boolean
#pushStatus(String,StringBuffer):boolean
+remove(byte[]):void
+setAutoColor(byte[],boolean):void
+setAux(byte[],short):void
+setLensSpeed(byte[],short);void()
+setProgrammingMode(byte[],boolean):void
+setViconSVFTCameraConfig(byte,ViconSVFTCamerConfig):void
updateCameraTitle(int,String):void
-verifyCommMode(CommunicationMode,String,CommandStatus,boolean):void

+m_controllableConfig : ControllableVideoCameraConfig
+m_defaultTitle2 : string
+m_ntcipCommunity : string
+m_enableHDLCFraming : boolean
+m_minPanSpeed : short
+m_maxPanSpeed: short
+m_minTiltSpeed: short
+m_maxTiltSpeed:short
+m_variableZoomSpeed:short
+m_variableFocusSpeed:short
+m_minZoomRange:int
+m_maxZoomRange:int

+execute()
+interrupted()

-m_provider : VideoProviderImpl
-m_cmdStat : CommandStatus
-m_token : token

+execute()
+interrupted()

-m_camera : ControllableVideoCameraImpl
-m_cmdStat : CommandStatus
-m_token : token

+getNTCIPCameraStatus() : NTCIPCameraStatus
+getNTCIPCameraConfig(token) : NTCIPCameraConfig
+setNTCIPCameraConfig(token, NTCIPCameraConfig , CommandStatus)
+setAutoFocus(token,boolean)
+setPowerOn(token,boolean)

+execute()
+interrupted()

-m_camera : VideoCameraImpl
-m_cmdStat : CommandStatus
-m_token : token
-m_orgID : revokedOrgID

+getNTCIPCameraStatus() : NTCIPCameraStatus
+getNTCIPCameraConfig(token) : NTCIPCameraConfig
#persistAndPushNTCIPCameraConfig(NTCIPCamera, String, StringBuffer):
 boolean
#persistNTCIPCameraConfig(NTCIPCamera, String, StringBuffer) : boolean
#persistStatus(String, StringBuffer) : boolean
#pushNTCIPCameraConfig(NTCIPCamera, String, StringBuffer) : boolean
#pushStatus(String, StringBuffer) : boolean
+setNTCIPCameraConfig(token, NTCIPCameraConfig , CommandStatus)

#m_cameraPushEventSupplier : PushEventSupplier
#m_devLogFile : LogFile
-m_ntcipConfig : NTCIPCameraConfig
-m_ntcipStatus : NTCIPCameraStatus
-m_protocolHandler : NTCIPProtocolHdlr

+execute()
+interrupted()

-m_camera : ControllableVideoCameraImpl
-m_cmdStat : CommandStatus
-m_token : token
-m_orgID : revokedOrgID

+m_controllableStatus : ControllableVideoCameraStatus
+m_currentTitle2 : string

+execute()
+interrupted()

-m_camera : VideoCameraImpl
-m_cmdStat : CommandStatus
-m_token : token

+m_controllableStatus : ControllableVideoCameraStatus
+m_currentTitle2 : string
+m_powerOn : boolean

Figure 7-7. CameraControlModule (Class Diagram)

7.3.1.1.1 BlockToPublicCmd (Class)

This class represents the information needed to create a block camera to public command to

be added on the CommandQueue.

7.3.1.1.2 CameraCommand (Class)

CameraCommand contains information about the commands sent to, and responses

received from, the camera.

7.3.1.1.3 CameraConfigValidation (Class)

This class validates camera configuration data for any type of camera (Video Source,

(Fixed) Video Camera, COHU3955, SVFT, and NTCIP).

CHART R7 Detailed Design 7-57 03/02/2010

7.3.1.1.4 CameraControlComPort (Class)

The CameraControlComPort interface is implemented by a class representing a COM port

with direct connection to the control port of a video camera. It is used to send video camera

control commands and return responses to a camera control process.

7.3.1.1.5 CameraControlDB (Class)

The CameraControlDB class provides an interface between the Camera service and the

database used to persist and depersist the Camera objects and their configuration and status

in the database. It contains a collection of methods that perform database operations on

tables pertinent to Camera Control. The class is constructed with a DBConnectionManager

object, which manages database connections. Methods exist to insert and delete Camera

objects from the database, and to get and set their configuration and status information.

7.3.1.1.6 CameraControlDevice (Class)

The CameraControlDevice interface is implemented by classes which provide

communications for access to control functions for a video camera. This includes encoders,

command processors, and direct COM ports.

7.3.1.1.7 CameraControlModule (Class)

The CameraControlModule class is the service module for the Camera devices and a

Camera factory. It implements the ServiceApplicationModule interface. It creates and

serves a single CameraFactoryImpl object, which in turn serves zero or more CameraImpl

objects. It also creates CameraControlDB, CameraControlModuleProperties, and

PushEventSupplier objects.

7.3.1.1.8 CameraControlModuleProperties (Class)

The CameraControlModuleProperties class is used to provide access to properties used by

the Camera Control Module. This class wraps properties that are passed to it upon

construction. It adds its own defaults and provides methods to extract properties specific to

the Camera Control Module.

7.3.1.1.9 CameraProtocolHdlr (Class)

CameraProtocolHdlr classes provide implementations for all the camera commands. Each

CameraImpl class will have a CameraProtocolHdlr instantiated when initialized. When a

camera control command is sent to the CameraImpl, CameraProtocolHdlr will be called to

translate the command to byte messages which the camera understands. Then those

messages are sent by the CameraControlDevice to the camera. CameraProtocolHdlr is

capable of using different CameraControlDevice which is created during the initialization.

7.3.1.1.10 CheckForAbandonedCameraTask (Class)

The CheckForAbandonedCameraTask is a timer task. When the timer fires, it checks to see

if a camera control session has exceeded the timeout, or whether a camera is controlled by

CHART R7 Detailed Design 7-58 03/02/2010

an Operations center with no one logged in.

7.3.1.1.11 COHU3955Camera (Class)

The COHUCamera interface is implemented by objects representing COHU-brand video

cameras. The COHUCamera interface is extended by the COHUMPCCamera and

COHU3955Camera interfaces. The COHUCamera interface includes all methods which

are common to the two COHU cameras used by CHART II, the COHU MPC camera and

the COHU 3955 camera. (Note that this interface may well contain a superset of methods

which would be implemented by the entire line of all models of COHU video cameras).

7.3.1.1.12 COHU3955CameraImpl (Class)

This class implements the COHU3955Camera interface, and inherits from the

ControllableCameraImpl class. The COHU3955CameraImpl implements methods of

COHU3955Camera, extending the controllable camera to include 3955-specific operations.

This class will contain a configuration and status object as necessary to convey 3955-

specific configuration and status information.

7.3.1.1.13 COHU3955CameraStatus (Class)

The CameraStatus class is an abstract value-type class which provides status information

for a Camera. This status information is relatively dynamic: things like the communication

mode, operational status, operation center information, status change time.

7.3.1.1.14 COHUProtocolHdlr (Class)

COHUProtocolHdlr is the base class for all COHU cameras. At present, this class contains

implementations for common functions for COHU MPC and COHU 3955 cameras

7.3.1.1.15 CommandProcessor (Class)

The CommandProcessor interface is implemented by a class representing a command

processor control port with direct connection to the control port of several video cameras.

It is used to send video camera control commands and return responses to a camera control

process.

7.3.1.1.16 CommandQueue (Class)

The CommandQueue class provides a queue for QueueableCommand objects. The

CommandQueue has a thread that it uses to process each QueueableCommand in a first in

first out order. As each command object is pulled off the queue by the CommandQueue's

thread, the command object's execute method is called, at which time the command

performs its intended task.

7.3.1.1.17 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put

online, or put in maintenance mode through a standard interface. These states typically

CHART R7 Detailed Design 7-59 03/02/2010

apply only to field devices. When a device is taken offline, it is no longer available for use

through the system and automated polling (if any) is halted. When put online, a device is

again available for use by TrafficEvents within the system and automated polling is enabled

(if applicable). When put in maintenance mode a device is offline (i.e., cannot be used by

TrafficEvents), and maintenance commands appropriate for the particular type of device are

allowed to help in troubleshooting.

7.3.1.1.18 ControllableCameraFactoryImpl (Class)

The CameraFactoryImpl class provides an implementation of the CameraFactory interface

(and its CameraFactory and SharedResourceManager interfaces) as specified in the IDL.

The CameraFactoryImpl maintains a list of CameraImpl objects and is responsible for

publishing Camera objects in the Trader on startup and as new camera objects are created.

Whenever a Camera is created or removed, that information is persisted to the database.

This class is also responsible for performing the checks requested by the timer tasks: to

poll the Camera devices, to look for Camera devices with timeout exceeded, to look for

Camera devices with no one logged in at the controlling operations center, and to initiate

recovery processing as needed

7.3.1.1.19 ControllableVideoCamera (Class)

The ControllableVideoCamera interface is implemented by objects representing

controllable video cameras within the CHART II system. The ControllableVideoCamera

interface represents a controllable video camera as opposed to the uncontrollable,

immovable VideoCamera. Current plans call for classes to represent a COHU MPC

camera, COHU 3955 camera, Vicon SVFT camera, and NTCIP-compliant camera, and

there are interfaces defined for each of these subtypes of ControllableVideoCamera. The

ControllableVideoCamera interface includes all methods common to the three known types

of video cameras currently in use by MDSHA, although it is likely to contain a superset of

methods which would be implemented by the entire universe of all video cameras which

could someday be used. This interface may have to be refined in the event that future

brands or models of video cameras might be incorporated under CHART II, but it is an

appropriate set of methods for the present day. Current plans call for classes to represent a

COHU MPC camera, COHU 3955 camera, Vicon SVFT camera, and NTCIP-compliant

camera.

7.3.1.1.20 ControllableVideoCameraConfig (Class)

The ControllableVideoCameraConfig is used to hold and transmit configuration

information about ControllableVideoCamera objects at the ControllableVideoCamera level.

7.3.1.1.21 ControllableVideoCameraImpl (Class)

The ControllableCameraImpl class provides an implementation of the

ControllableVideoCamera interface and is derived from the CameraImpl class

implementing the VideoCamera interface.

This class contains a CommandQueue object that is used to sequentially execute long

CHART R7 Detailed Design 7-60 03/02/2010

running operations related to camera control in a thread separate from the CORBA request

threads, thus allowing quick initial responses.

Also contained in this class are ControllableVideoCameraConfig and

ControlablVideoCameraStatus objects (used to store the configuration and status of the

camera), and a VideCameraData object (used to store internal status information which is

persisted but not pushed out to clients).

The ControllableCameraImpl contains *Impl methods that map to methods specified in the

IDL, including requests to request control of the camera, terminate control of the camera,

override control of the camera, and to send pan/tilt/zoom (PTZ) commands to the camera.

Some of these requests are long running, so each request is stored in a specific subclass of

QueueableCommand and added to the CommandQueue. The queueable command objects

simply call the appropriate ControllableCameraImpl method as the command is executed

by the CommandQueue in its thread of execution. PTZ commands are not considered long

running and are not placed on the command queue.

The ControllableCameraImpl also contains methods called by the CameraFactory to

support the timer tasks of the Camera Service: to poll the Camera, to look for Camera

devices with communications timeout exceeded.

7.3.1.1.22 ControllableVideoCameraStatus (Class)

The ControllableVideoCameraStatus is used to hold and transmit status information about

ControllableVideoCameraStatus objects at the ControllableVideoCamera level.

7.3.1.1.23 ControllingInfo (Class)

The ControllingInfo structure contains information about the entity controlling (or

requesting to control) a VideoCamera.

7.3.1.1.24 DataPortEnabled (Class)

This interface is implemented by device specific communications classes. This interface

provides an extra layer to remove dependencies on device specific packages.

7.3.1.1.25 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database

connections. Any CHART II system thread requiring database access gets a database

connection from the pool of connections maintained by this manager class. The connections

are maintained in two separate lists namely, inUseList and freeList. The inUseList contains

connections that have already been assigned to a thread. The freeList contains unassigned

connections. This class assumes that an appropriate JDBC driver has been loaded either by

using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor

thread that is started by the constructor. This connection monitor thread periodically checks

the inuseList to see if there are connections that are owned by dead threads and move such

connections to the freeList. The connection monitor thread is started only if a non-zero

value is specified for the monitoring time interval in the constructor.

CHART R7 Detailed Design 7-61 03/02/2010

7.3.1.1.26 DisplayImageCmd (Class)

This class represents the information needed to create a display image command to be

added on the CommandQueue.

7.3.1.1.27 Encoder (Class)

The Encoder interface is implemented by classes representing any type of video encoder.

The Encoder interface includes both the Codec and the VideoSendingDevice interfaces,

which means in addition to providing forwarding of video, it also is used to send video

camera control commands and return responses to a camera control process.

7.3.1.1.28 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or

recurring execution.

7.3.1.1.29 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one

or more times.

7.3.1.1.30 MoveToPresetCmd (Class)

This class represents the information needed to create a move to preset command to be

added on the CommandQueue.

7.3.1.1.31 NTCIPCamera (Class)

This interface is used to represent an NTCIP model video camera in the field. The system

contains an instance of this interface for each NTCIP video camera.

7.3.1.1.32 NTCIPCameraCommands (Class)

This class holds the ntcip command OIDs so the mib db does not have to be queried after

startup.

7.3.1.1.33 NTCIPCameraConfig (Class)

This structure defines configuration data for the NTCIP type video camera.

7.3.1.1.34 NTCIPCameraImpl (Class)

This class implements the NTCIPCamera interface, and inherits from the

ControllableCameraImpl class. The NTCIPCameraImpl implements methods of

NTCIPCamera, extending the controllable camera to include NTCIP-specific operations.

This class will contain a configuration and status object as necessary to convey NTCIP-

specific configuration and status information.

CHART R7 Detailed Design 7-62 03/02/2010

7.3.1.1.35 NTCIPCameraPositionReference (Class)

This class represents the NTCIP protocol Camera Position Reference object. This object is

used in position commands to configure the speed and direction of movement.

7.3.1.1.36 NTCIPCameraProtocolHdlr (Class)

This object contains the protocol for communication with a NTCIP Camera.

7.3.1.1.37 NTCIPCameraStatus (Class)

This structure defines the status data for the NTCIP video camera type.

7.3.1.1.38 PollCameraTask (Class)

The PollCameraTask is a timer task. When the timer fires it polls a camera by sending a

poll command to the camera.

7.3.1.1.39 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.

The user of this class can pass a reference to the event channel factory to this object. The

constructor will create a channel in the factory. The push method is used to push data on

the event channel. The push method is able to detect if the event channel or its associated

objects have crashed. When this occurs, a flag is set, causing the push method to attempt to

reconnect the next time push is called. To avoid a supplier with a heavy supply load from

causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.

This interval specifies the quickest reconnect interval that can be used. The push method

uses this interval and the current time to determine if a reconnect should be attempted, thus

reconnects can be throttled independently of a supplier's push rate.

7.3.1.1.40 PutCameraOnlineCmd (Class)

This class represents the information needed to request a put camera online command to be

added on the CommandQueue.

7.3.1.1.41 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a

CommandQueue for asynchronous execution. Derived classes implement the execute

method to specify the actions taken by the command when it is executed. This interface

must be implemented by any device command in order that it may be queued on a

CommandQueue. The CommandQueue driver calls the execute method to execute a

command in the queue and a call to the interrupted method is made when a

CommandQueue is shut down.

CHART R7 Detailed Design 7-63 03/02/2010

7.3.1.1.42 RequestCameraControlCmd (Class)

This class represents the information needed to request a camera control command to be

added on the CommandQueue.

7.3.1.1.43 RequestCameraOverrideCmd (Class)

This class represents the information needed to request a camera control override command

to be added on the CommandQueue.

7.3.1.1.44 RevokeControlCmd (Class)

This class represents the information needed to create a revoke camera control command to

be added on the CommandQueue.

7.3.1.1.45 RevokeDisplayCmd (Class)

This class represents the information needed to create a revoke camera display command to

be added on the CommandQueue.

7.3.1.1.46 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a

ChartII service application. These services include providing access to basic CORBA

objects that are needed by service applications, such as the ORB, POA, Trader, and Event

Service.

7.3.1.1.47 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing

classes are notified when their host service is initialized and when it is shutdown. The

implementing class can use these notifications along with the services provided by the

invoking ServiceApplication to perform actions such as object creation and publication.

7.3.1.1.48 TakeCameraOfflineCmd (Class)

This class represents the information needed to request a take camera offline command to

be added on the CommandQueue.

7.3.1.1.49 TerminateControlCmd (Class)

This class represents the information needed to request a terminate camera control

command to be added on the CommandQueue.

7.3.1.1.50 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the

system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

CHART R7 Detailed Design 7-64 03/02/2010

7.3.1.1.51 ViconSVFTCameraImp (Class)

This class implements the ViconSVFTCamera interface, and inherits from the

ControllableCameraImpl class. The ViconSurveyorVFTCameraImpl implements methods

of ViconSVFTCamera, extending the controllable camera to include Vicon SVFT-specific

operations. This class will contain a configuration and status object as necessary to convey

Vicon SVFT-specific configuration and status information.

7.3.1.1.52 ViconSVFTCameraStatus (Class)

The ViconSVFTCameraStatus class is used to hold camera status information at the

ViconSVFTCamera level. Only ViconSVFTCamera specific information is stored.

7.3.1.1.53 ViconSVFTProtocolHdlr (Class)

This class contains an implementation for Vicon SVFT camera control commands. It

translates every camera command (pan, tilt, zoom…) into bytes that a Vicon SVFT camera

understands. Then, it uses a CameraControlDevice to send the byte codes to the camera and

evaluate responses from the camera.

7.3.1.1.54 VideoCamera (Class)

The VideoCamera interface is implemented by objects representing controllable video

cameras within the CHART II system. The VideoCamera interface represents a

controllable video camera as opposed to the uncontrollable, immovable

FixedVideoCamera, the other type of GenericVideoCamera. (The VideoCamera class

could have been called the ControllableVideoCamera interface, but since the CHART II

video system exists primarily to control controllable video cameras, the camera hierarchy

has been arranged to avoid the longish name ControllableVideoCamera.) Current plans call

for classes to represent a COHU MPC camera, COHU 3955 camera, Vicon SVFT camera,

and NTCIP-compliant camera, and there are interfaces defined for each of these subtypes of

VideoCamera. The VideoCamera interface includes the GeoLocatable interface, to

someday allow for advanced features such as automatic identification of cameras near

traffic events, automatic pointing of cameras to traffic events, etc.

The VideoCamera interface includes all methods common to the three known types of

video cameras currently in use by MDSHA, although it is likely to contain a superset of

methods which would be implemented by the entire universe of all video cameras which

could someday be used. This interface may have to be refined in the event that future

brands or models of video cameras might be incorporated under CHART II, but it is an

appropriate set of methods for the present day.

7.3.1.1.55 VideoCameraConfig (Class)

The VideoCameraConfig structure is used to hold configuration information about

VideoCamera objects at the VideoCamera level. Further details about lower-level

VideoCamera subclasses are provided by subclasses of VideoCameraConfig.

CHART R7 Detailed Design 7-65 03/02/2010

7.3.1.1.56 VideoCameraFactory (Class)

The VideoCameraFactory interface is implemented by factory classes responsible for

creating, maintaining, and controlling a collection of VideoCamera objects.

7.3.1.1.57 VideoCameraImpl (Class)

The CameraImpl class provides an implementation of the VideoCamera interface, and by

extension the VideoSource, SharedResource, CommEnabled, GeoLocatable, and

UniquelyIdentifiable interfaces, as specified by the IDL.

This class contains a CommandQueue object that is used to sequentially execute long

running operations in a thread separate from the CORBA request threads, thus allowing

quick initial responses.

Also contained in this class are VideoCameraConfig and VideoCameraStatus objects (used

to store the configuration and status of the camera), and a VideCameraData object (used to

store internal status information which is persisted but not pushed out to clients).

The CameraImpl contains *Impl methods that map to methods specified in the IDL,

including requests to display the camera video on a monitor, remove the camera video from

a monitor, put the camera online, put the camera offline, put the camera in maintenance

mode (future), or to change (set) the configuration of the camera (future). Some of these

requests require (or potentially require) field communications to the device, so each request

is stored in a specific subclass of QueueableCommand and added to the CommandQueue.

The queueable command objects simply call the appropriate CameraImpl method as the

command is executed by the CommandQueue in its thread of execution.

The CameraImpl also contains methods called by the CameraFactory to support the timer

tasks of the Camera Service: to look for Cameras with no one logged in at the controlling

operations center, and to initiate recovery processing if needed (future).

7.3.1.1.58 VideoCameraStatus (Class)

The VideoCameraStatus structure is used to hold status information about VideoCamera

objects at the VideoCamera level. Further details about lower-level VideoCamera

subclasses are provided by subclasses of VideoCameraStatus.

7.3.1.1.59 VideoProvider (Class)

The VideoProvider interface is a generic abstract interface including VideoSource objects

(e.g. video cameras) and BridgeCircuit objects. Both VideoSource and BridgeCircuit

objects provide video to a VideoCollector, but only VideoSource objects are true origins of

video which a typical user would have direct interaction with. BridgeCircuit VideoProvider

objects merely pass on video provided from elsewhere in a VideoRoute.

7.3.1.1.60 VideoProviderConfig (Class)

This structure defines configuration data common to all video sources.

CHART R7 Detailed Design 7-66 03/02/2010

7.3.1.1.61 VideoProviderImpl (Class)

This class implements the VideoProvider interface as an abstract class. Subclasses for this

class are the VideoCameraImpl and BridgeCircuitProviderImpl class.

7.3.1.1.62 VideoProviderStatus (Class)

The VideoProviderStatus structure is used to hold and transmit status information about

VideoProvider objects at the VideoProvider level. Further details about lower-level

VideoProvider subclasses are provided by subclasses of VideoProviderStatus.

7.3.1.1.63 VideoSource (Class)

The VideoSource interface is implemented by objects which originate video signals, such

as video cameras and image generators. Within the user interface, the VideoSource

interface represents all video sources which can be put on monitors (i.e., VideoSink

objects).

The VideoSource interface includes the SharedResource interface. A VideoSource is

controlled by an Operations Center if the VideoSource is in maintenance mode, or if the

VideoSource is a camera which has an active control session up.

7.3.1.1.64 VideoSourceConfig (Class)

This structure defines configuration data common to all video sources.

7.3.1.1.65 VideoSourceStatus (Class)

The VideoSourceStatus structure is used to hold and transmit status information about

VideoSource objects at the VideoSource level. Further details about lower-level

VideoSource subclasses are provided by subclasses of VideoSourceStatus.

CHART R7 Detailed Design 7-67 03/02/2010

7.3.2 Sequence Diagrams

7.3.2.1 CameraControlModule:AddCamera (Sequence Diagram)

This sequence diagram shows the implementation of the createCamera interface of the

VideoCameraFactory. There are actually three create methods in the factory, one for each

type of camera: COHU 3955, Surveyor VFT and NTCIP. Since they all work the same

way, they are all represented by createCamera(). First a check is performed to verify that

the operator has sufficient privileges to create a camera. Next, the camera is inserted into

the database. All video sending devices and flash video stream controls configurations are

stored in the database. Part of this process includes creating the camera object itself.

Finally, the new camera object is activated and the event is pushed out to clients.

R7
Starting in this release process can
create NTCIP cameras

setVideoProviderConfig(Identifier, config)

Log

createCamera
(token,config)

[no rights]
AccessDenied

insertCamera
(Identifier, config)

errorMessage

ControllableVideo
CameraFactoryImpl CameraControlDB

ORB

checkAccess

[no rights[
log(token, "unauth. attempt to create Camera)

[DB Error]
Chart2Exception

pushAddCamera

TokenManipulator

persist all
 video sending

devices

persist all flash
video stream controls

Adds persitance of multiple
flash video stream controls and
video sending devices

setVideoCameraConfig(Identifier, config)

CameraConfigValidation

validate each
flash video stream control

validate each
sending device config

validateConfig(config Validates multiple
flash video stream controls and
video sending devices

Figure 7-8. CameraControlModule:AddCamera (Sequence Diagram)

CHART R7 Detailed Design 7-68 03/02/2010

7.3.2.2 CameraControlModule:MoveToPreset (Sequence Diagram)

This sequence diagram describes the process of moving to a preset for COHU 3955, Vicon,

and NTCIP cameras. The absolute position of the camera is retrieved and the command is

built up and sent to the camera by the protocol handler. Next, the camera is queried to get

it's absolute position as it moves to the preset. Once it reaches the expected position (within

a tolerance), the operation succeeds. Otherwise the operation fails.

R7 adds NTCIP camera
to the process

[if NTCIP] moveToPreset(presetNum)

persistAndPushStatus()

testAndSetCommandRunning()

getPresetCheck()

[if endTime > presetTimeout]

setActiveTitle(title,linenum)

clearCommandRunning()

[if VICON] moveToStoredPreset(presetnum)

This diagram illustrates moveToPreset
functionality for the COHU 3955, Vicon Suveyor, and NTCIP Cameras.
The protocol handler is responsible for
sending and receiving the position commands
from the camera. The ControllableVideoCamera
checks a to see if the camera is at the correct position.
The number of position checks the ControllableVideoCamera
makes is dependent on a property. The tolerance is also
stored as a property

while
 Preset - Position

> Tolerance

CameraControlModuleProperties

getPresetTolerance()

ControllableVideoCamera CameraControlDB

return Preset

Preset

create

[if COHU3955] setCameraPosition(preset)

getPosition()

CameraProtocolHdlr

moveToPreset(number)

getPreset(number,cameraID)

Figure 7-9. CameraControlModule:MoveToPreset (Sequence Diagram)

CHART R7 Detailed Design 7-69 03/02/2010

7.3.2.3 CameraControlModule:SavePreset (Sequence Diagram)

This operation is used to save the current camera position as a preset.

cmdStatusCompleted("Successfully saved Preset")

setPresetTitle(title)

CameraControlDBPosition

moveToPreset(num)

ControllableVideoCamera

savePreset(token,Preset, cmdStat)

CameraProtocolHdlr

getPosition()

create(Position,Number,Description)

Preset

R7: Starting in this release this
process supports NTCIP cameras

CommandStatus

update("Queued save preset command")

[if invalid preset num||
invalid title length]

SavePresetCmd

create

savePresetImpl(token, preset cmdStat)

[if timewaiting > longCmdTimeout]

[if CommFailed] clearCommandRunning();

setControllableCameraPreset

Java.Lang.String

[if CommFailed] cmdStatusCompleted()

pushStatus()

create

update("Preset title saved")

[if CommSuccess] update("Queried camera position")

toUpper()

update("Preset updated in the DB")

update("Preset stored on the camera")

testAndSetCommandRunning
update("Vefied no other commands running")

storePreset()

clearCommandRunning()

Figure 7-10. CameraControlModule:SavePreset (Sequence Diagram)

CHART R7 Detailed Design 7-70 03/02/2010

7.3.2.4 CameraControlModule:SetCameraConfiguration (Sequence Diagram)

This sequence diagram shows the implementation of the setConfiguration interface of the

CameraImpl class (which represents VideoProviderImpl, VideoSourceImpl,

VideoCameraImpl etc.). First a check is performed to verify that the operator has sufficient

privileges to update a camera. Next a check is made to see that the camera is offline. Only

offline cameras may have their configurations updated. If the camera is offline, the new

configuration is validated. During this process all flash video stream control and video

sending device configurations are validated. Next the new configuration is written to the

database. During the set configuration process, all flash video stream controls and video

sending devices configured for the camera are updated in the database. Finally, the camera

is apprised of its new configuration.

R7
Starting in this release process can
set config for NTCIP cameras

setVideoCameraConfig(cameraID, config)

[invalid config]
Char2Exception

checkCommdMode

notOffline
Char2Exception

acessDenied

CameraControlDB

validateConfig(config)

[no rights]
log(token, "unauth. attempto to configure camera)

VideoCameraImpls OperationsLog
PushEvent

Supplier

setConfig
(token,config) checkAccess

TokenManipulator

pushConfig

[online]
log(token, "must be offline to change configuration)

setConfiguration(cameraID, config)

[invalid configuration]
log(token, "invalid data")

insert or update all
 flash video controls

setVideoProviderConfig(Identifier, config)

Adds insert or update of multiple
flash video stream controls and
video sending devices

insert or update all
v ideo sending devices

setVideoSourceConfig(Identifier, config)

Validate multiple
flash video stream controls and
video sending devices

CameraConfigValidation

validate each video
sending device config

validate each
flash video stream control

Figure 7-11. CameraControlModule:SetCameraConfiguration (Sequence Diagram)

CHART R7 Detailed Design 7-71 03/02/2010

7.3.2.5 CameraControlModule:TakeCameraOffline (Sequence Diagram)

This Sequence Diagram shows the process of taking a camera offline. This command is

executed asynchronously to avoid having to block for commands that may take a long time.

The bulk of the work is done in the for loop with the cameraUnAvailable. We check to see

if the camera is being displayed on the monitor, if so, we call displayImage with the

NoVideoAvailableSource. The camera status will be updated to show that it is offline. If

this camera is part of a tour, the camera will be skipped since its status will be offline.

R7
Starting in this release process can
take offline NTCIP cameras

See CameraControlModule:
TerminateControl
Sequence Diagram

verifyAccess(token)

[no right]
Access Denied

create

execute

CameraControlDB

[isControlled == true] disconnect()
[isControlled == true] removeControlledCamera(sysToken, ID)

create

persistAndPushStatus()

CameraProtocolHdlr

DisplayNoVideoAvailbleCmd

update ("camera image removed from monitor")

MonitorGroup

displayNoVideoAvailableImpl()

setStatus (cameraId)

update("Command queued")

log (token, "Camera image removed from monitor")

verifyNoResourceConflict(token,cmdStat)

See CameraControlModule::
DisplayNoVideoAvailable

[no right]
log(token,"doesn't have transfer shared resource right")

isRevokedFor (Identifier)

[revoked]

VideoSink

sourceUnavailable ()

[for each
monitor

displayed]

we don't care how many
monitors we are displayed
on, we will terminate
control no matter what.

PushEventSupplier

completed ()

push (status)

checkAccess(token)

VideoProviderImpll CommandStatus TokenManipulator

TakeOfflineCmd

CommandQueue OperationsLog

[offline]
Completed

[offline]
Offline

getProviderStatus ()

isControlled ()

takeOffline (token,cmdStat)
checkAccess(token)

[no right]
log(token, "unauth attempt to take camera offline")

[no right]
Completed

addCommand(TakeOfflineCmd)

command queued

takeOfflineImpl ()

[bIsControlled == true]
terminateControlImpl ()

Figure 7-12. CameraControlModule:TakeCameraOffline (Sequence Diagram)

CHART R7 Detailed Design 7-72 03/02/2010

7.3.2.6 Encoder:receive (Sequence Diagram)

This diagram shows the processing that occurs when receiving data on an ip encoder port

using initial,interchar,and maxDuration timeouts.

[deviceLogging enabled]
log(response)

This diagram shows the processing that occurs when receiving data on an ip encoder port using initial,interchar,and maxDuration timeouts.

System

Encoder
DataPortUtility LogFile

See DataPortUtility:receiveFromTCPPort

receive(intial,interchar, maxDuration)

[not connected]
connect

[error connecting]
return 0 receiveFromTCPPort(InputStream stream, int initial,

int interChar, int maxDuration, int numBytes)

[Error]
Exception

return byte[] response

[deviceLogging enabled]
log(error)

return byte[] response

Figure 7-13. Encoder:receive (Sequence Diagram)

CHART R7 Detailed Design 7-73 03/02/2010

7.3.2.7 NTCIPCameraProtocolHdlr:adjPan (Sequence Diagram)

This diagram shows the processing that occurs when an adjust pan command is sent from

the NTCIPCameraImpl to the NTCIPCameraProtocolHdlr. The protocol hdlr contains a set

of NTCIPCameraCommands consisting of all command OID's at construction time. If the

control device is an encoder, the command is sent through a shared NTCIP utility class,

otherwise the existing CameraControlDevice code is used for data transmission.

OK,COMM_FAILURE,TIMEOUT, WAIT,INTERRUPTED,
LOST_CONNECTION,SOCKET_ERROR, PARTIAL_DATA

CameraOperationalStatus

NTCIPCameraPositionReference

new NTCIPCameraPositionReference

byte[] cmdByteArray

new(int direction, int speed)

getPositionCommand()

See NTCIPCameraProtocolHdlr.sendMessage

sendMessage(NTCIPCameraCommand.PAN, byte[] cmdByteArray)

System (NTCIPCameraImpl)

This diagram shows the processing that occurs when an adjust pan command is sent
from the NTCIPCameraImpl to the NTCIPCameraProtocolHdlr. The protocol hdlr contains
a set of NTCIPCameraCommands consisting of all command OID's at construction time. The
pan command is sent to the sendMessage method which handles the communications to the camera.

NTCIPCameraProtocolHdlr

LogFile

adjPan(int direction)
log(this, "adjPan:PAN")

Figure 7-14. NTCIPCameraProtocolHdlr:adjPan (Sequence Diagram)

CHART R7 Detailed Design 7-74 03/02/2010

7.3.2.8 NTCIPCameraProtocolHdlr:adjZoom (Sequence Diagram)

This diagram shows the processing that occurs when an adjust zoom command is sent from

the NTCIPCameraImpl to the NTCIPCameraProtocolHdlr. The protocol hdlr contains a set

of NTCIPCameraCommands consisting of all command OID's at construction time. The

zoom command is sent to the sendMessage method which handles the communications to

the camera. Upon receiving a zoom stop command, an additional command is sent to

retrieve the camera's zoom position to facilitate in automatically adjusting control speed

based off zoom position.

This diagram shows the processing that occurs when an adjust zoom command is sent
from the NTCIPCameraImpl to the NTCIPCameraProtocolHdlr. The protocol hdlr contains
a set of NTCIPCameraCommands consisting of all command OID's at construction time. The
zoom command is sent to the sendMessage method which handles the communications to the camera.
Upon receiving a zoom stop command, an additional command is sent to retrieve the camera's zoom position
to facilitate in automatically adjusting control speed based off zoom position.

NTCIPCameraProtocolHdlr

LogFile

NTCIPCameraPositionReferencenew(int direction, int speed)

new NTCIPCameraPositionReference

sendMessage(NTCIPCameraCommand.ZOOM, byte[] cmdByteArray)

adjZoom(int direction)

OK,COMM_FAILURE,TIMEOUT, WAIT,INTERRUPTED,
LOST_CONNECTION,SOCKET_ERROR, PARTIAL_DATA

See NTCIPCameraProtocolHdlr.sendMessage[NOT a zoom stop command]
CameraOperationalStatus

CameraOperationalStatus

calculateControlSpeeds(int zoomPosition)

System (NTCIPCameraImpl)

getPositionCommand()

log(this, "adjZoom:ZOOM")

byte[] cmdByteArray

See NTCIPCameraProtocolHdlr.calculateControlSpeeds(int zoomPosition)

Figure 7-15. NTCIPCameraProtocolHdlr:adjZoom (Sequence Diagram)

CHART R7 Detailed Design 7-75 03/02/2010

7.3.2.9 NTCIPCameraProtocolHdlr:calculateControlSpeeds (Sequence Diagram)

This method shows the processing that occurs to adjust the pan and tilt control speeds based

off the zoom position. The camera configuration will store min/max zoom positions and a

min/max pan/tilt control speeds.

This method shows the processing that occurs to adjust the pan and tilt control speeds based off the zoom position. The
camera configuration will store min/max zoom positions and a min/max pan/tilt control speeds.

System(NTCIPCameraProtocolHdlr)

NTCIPCameraProtocolHdlr

See NTCIPCameraProtocolHdlr::getZoomPosition

Perform the following logic for both pan and tilt commands since the min/max
speeds could be different.

float pctZoomed = (float)(currentZoomPos - minZoomPos) / (float)(maxZoomPos - minZoomPos)
int panSpeedRange = maxPanSpeed - minPanSpeed
int calculatedPanSpeed = minPanSpeed + (int)(round(pctZoomed * panSpeedRange))

Note: Min zoom position returned from both COHU 3955 and 3960 was 1 (minimum).
Max zoom position returned from both COHU 3955 and 3960 was 65520 (near maximum).
Min/Max zoom values for SVFT have not been checked yet.

getZoomPositiongetZoomPosition

calculateControlSpeeds(int zoomPosition)calculateControlSpeeds(int zoomPosition)

Figure 7-16. NTCIPCameraProtocolHdlr:calculateControlSpeeds (Sequence Diagram)

CHART R7 Detailed Design 7-76 03/02/2010

7.3.2.10 NTCIPCameraProtocolHdlr:connect (Sequence Diagram)

This diagram shows the processing that occurs when connecting to an NTCIP camera for a

control session. Upon connecting, the zoom position is retrieved to ensure the control

speed is scaled correctly.

This diagram shows the processing that occurs to open a connection to an NTCIP camera. This occurs
when a control session is opened and from a poll. When an NTCIP camera control session is opened, a
command is sent to query the camera's current zoom position, and adjust the control speed as necessary.

System(ControllableVideoCameraImpl)

NTCIPCameraProtocolhdlr CameraControlDevice

update CameraOperationsStatus if success
or failure

connect

connect

calculateControlSpeeds

boolean isConnected?

Figure 7-17. NTCIPCameraProtocolHdlr:connect (Sequence Diagram)

CHART R7 Detailed Design 7-77 03/02/2010

7.3.2.11 NTCIPCameraProtocolHdlr:getZoomPosition (Sequence Diagram)

This diagram shows the processing that occurs when a request for the camera's zoom

position is requested. This will occur when a control session is first opened and also from

within a zoom stop. This method will first try to use a specific mib to query the zoom

position, If that does not work the mib for setting the camera zoom will be used to

determine the zoom positiion. If using the later, the response will have to be parsed from a

hex string to determine the position.

This diagram shows the processing that occurs when a request for the camera's zoom position is requested.
This will occur when a control session is first opened and also from within a zoom stop. This method will first
try to use a specific MIB to query the zoom position, If that does not work the MIB for setting the camera zoom
will be used to determine the zoom position. If using the latter, the response will be parsed from a hex string to
determine the position.

System(NTCIPCameraProtocolHdlr)

NTCIPCameraProtocolHdlr

Set flag for which method worked.
This flag is per camera.

String Integer

If this method worked last time
for this camera, or flag not set yet.

substr(4)substr(4)
substring containing hex octets representing zoom positionsubstring containing hex octets representing zoom position

valueOf(zoomPositionSubstring,16)valueOf(zoomPositionSubstring,16)

returns integer value of zoomPosition hex stringreturns integer value of zoomPosition hex string
return int zoomPositionreturn int zoomPosition

getZoomPositiongetZoomPosition

sendMessageForData(NTCIPCameraCommand.ZOOMPOSITION)sendMessageForData(NTCIPCameraCommand.ZOOMPOSITION)

[command worked]
return int zoomPosition

[command worked]
return int zoomPosition

sendMessageForData(NTCIPCameraCommand.ZOOM)sendMessageForData(NTCIPCameraCommand.ZOOM)

Figure 7-18. NTCIPCameraProtocolHdlr:getZoomPosition (Sequence Diagram)

CHART R7 Detailed Design 7-78 03/02/2010

7.3.2.12 NTCIPCameraProtocolHdlr:moveToPreset (Sequence Diagram)

This diagram shows the processing that occurs when an NTCIP camera is moved to a stored

preset position. The camera is moved to the stored preset. After moving, a command is sent

to enable the preset title for the 2nd line.

This diagram shows the processing that occurs when an NTCIP camera is moved to a stored preset position.
The camera is moved to the stored preset. After moving, a command is sent to enable the preset title for the 2nd
line.

System(ControllableVideoCamera)

NTCIPCameraProtocolHdlr

See NTCIPCameraProtocolHdlr.sendMessage

NTCIPCameraCommands
OID

command(NTCIPCameraCommand.LABEL_STATUS)command(NTCIPCameraCommand.LABEL_STATUS)

sendMessage(OID cmd, int presetNum)sendMessage(OID cmd, int presetNum)

command(NTCIPCameraCommand.MOVE_TO_PRESET)command(NTCIPCameraCommand.MOVE_TO_PRESET)

setX(presetNum + 2)setX(presetNum + 2)

sendMessage(OID labelCmd, int labelActive)sendMessage(OID labelCmd, int labelActive)

returns label status OIDreturns label status OID

moveToPreset(int presetNum)moveToPreset(int presetNum)

returns move to preset OID commandreturns move to preset OID command

Figure 7-19. NTCIPCameraProtocolHdlr:moveToPreset (Sequence Diagram)

CHART R7 Detailed Design 7-79 03/02/2010

7.3.2.13 NTCIPCameraProtocolHdlr:poll (Sequence Diagram)

This diagram shows the processing that occurs when an ntcip camera is polled.

This diagram shows the processing that occurs when an NTCIP camera is polled.

System(ControllableVideoCamera)

NTCIPCameraProtocolHdlr LogFile

This method reads alarm status values
including video loss, pressure loss

This method reads lens status values
including auto focus, auto iris

This method reads camera feature status values
including power state

returns CameraOperationalStatusreturns CameraOperationalStatus

getCameraFeatureStatus(byte[] response)getCameraFeatureStatus(byte[] response)

sendMessageForData(NTCIPCameraCommand.ALARM_STATUS)sendMessageForData(NTCIPCameraCommand.ALARM_STATUS)

poll()poll()

getAlarmStatus(byte[] response)getAlarmStatus(byte[] response)

log(this,"poll")log(this,"poll")

getLensStatus(byte[] response)getLensStatus(byte[] response)

sendMessageForData(NTCIPCameraCommand.CAMERA_FEATURE_STATUS)sendMessageForData(NTCIPCameraCommand.CAMERA_FEATURE_STATUS)

sendMessageForData(NTCIPCameraCommand.LENS_STATUS)sendMessageForData(NTCIPCameraCommand.LENS_STATUS)

Figure 7-20. NTCIPCameraProtocolHdlr:poll (Sequence Diagram)

CHART R7 Detailed Design 7-80 03/02/2010

7.3.2.14 NTCIPCameraProtocolHdlr:sendMessage (Sequence Diagram)

This diagram shows the processing that occurs when a command is sent to an NTCIP

camera. The command is looked up from a collection stored in the protocol hdlr in the

form of an OID. The command datapayload is passed and set in the command. A

DataPortUtility object is created that sets either an encoder or CameraControlComPort as

the control device. The DataPortUtility class is then passed to he NTCIPUtility class along

with the OID to send the command to the camera.

This diagram shows the processing that occurs when a command is sent to an NTCIP camera. The command is looked up
from a collection stored in the protocol hdlr in the form of an OID. The command datapayload is passed and set in the command.
A DataPortUtility object is created that sets either an encoder or CameraControlComPort as the control device. The DataPortUtility class
is then passed to the NTCIPUtility class along with the OID to send the command to the camera.

System(NTCIPCameraProtocolHdlr)

NTCIPCameraProtocolHdlr

OK,COMM_FAILURE,TIMEOUT, WAIT,INTERRUPTED,
LOST_CONNECTION,SOCKET_ERROR, PARTIAL_DATA

NTCIPCameraCommands

OID

NTCIPUtility

DataPortUtility

[payLoad instanceOf primative]
setValue(payLoad)

[payLoad instanceOf primative]
setValue(payLoad)

[payLoad instanceOf byte[]]
setByteValue(byte[] payLoad)
[payLoad instanceOf byte[]]

setByteValue(byte[] payLoad)

CameraOperationalStatusCameraOperationalStatus

new(null,null,CameraControlDevice ctrlDevice)new(null,null,CameraControlDevice ctrlDevice)

set(Oid oid,DataportUtility port)set(Oid oid,DataportUtility port)

CameraOperationalStatusCameraOperationalStatus

command(cmd)command(cmd)

return command OIDreturn command OID

sendMessage(NTCIPCameraCommand cmd,Object payLoad)sendMessage(NTCIPCameraCommand cmd,Object payLoad)

Figure 7-21. NTCIPCameraProtocolHdlr:sendMessage (Sequence Diagram)

CHART R7 Detailed Design 7-81 03/02/2010

7.3.2.15 NTCIPCameraProtocolHdlr:sendMessageForData (Sequence Diagram)

This diagram shows the processing that occurs when a command is sent to an NTCIP

camera where a response is expected. The command is looked up in the protocolHdlr's

stored array of commands. If a payload is specified, the value is updated in the OID A

DataPortUtility is created and passed along with the OID to the NTCIPUtility which

executes the command and returns the response.

[payLoad instanceOf byte[]]
setByteValue(payLoad)

[payLoad instanceOf primative]
setValue(payLoad)

System(NTCIPCameraProtocolHdlr) NTCIPCameraCommands

DataPortUtility

command(cmd)

get(OID oid,DataPortUtility port,boolean utfEncoding)

NTCIPCameraProtocolHdlr

This diagram shows the processing that occurs when a command is sent to an NTCIP camera where
a response is expected. The command is looked up in the protocolHdlr's stored array of commands. If a payload
is specified, the value is updated in the OID A DataPortUtility is created and passed along with the OID to the NTCIPUtility
which executes the command and returns the response.

NTCIPUtility

return cmd OID

new(null,null, CameraControlDevice ctrlDevice)

return String response
return String response

sendMessageForData(NTCIPCameraCommand cmd,
 Object payLoad)

OID

Figure 7-22. NTCIPCameraProtocolHdlr:sendMessageForData (Sequence Diagram)

CHART R7 Detailed Design 7-82 03/02/2010

7.3.2.16 NTCIPCameraProtocolHdlr:setLabelText (Sequence Diagram)

This diagram shows the processing that occurs when setting a label/title. One command sets

the text of the label. The second command activates the label.

command(NTCIPCommand.LabelActivate)

setX(num)

command(NTCIPCommand.LabelText)

NTCIPCameraProtocolHdlr

System(ControllableVideoCamera)

See NTCIPCameraProtocolHdlr:sendMessage

sendMessage(OID, int activate)

returns LabelActivate OID

sendMessage(OID oid, String title)

OID

NTCIPCameraCommands

returns LabelText OID

setX(num)

setLabelText(int num, String title)

This diagram shows the processing that occurs when setting a label/title. One
command sets the text of the label. The second command activates the label.

Figure 7-23. NTCIPCameraProtocolHdlr:setLabelText (Sequence Diagram)

CHART R7 Detailed Design 7-83 03/02/2010

7.3.2.17 NTCIPCameraProtocolHdlr:setPresetTitle (Sequence Diagram)

This diagram shows the processing that occurs when storing a title for a preset on an

NTCIP camera. NTCIP defines a label table for storing titles. Each label entry must

contain text, and a start row. The first two rows are reserved for default title line 1 and 2.

This diagram shows the processing that occurs when storing a title for a preset on an NTCIP camera.
NTCIP defines a label table for storing titles. Each label entry must contain text, and a start row. The first
2 rows are reserved for default title line 1 and 2.

NTCIPCameraProtocolHdlr

setPresetTitle(int num, String title)

System(ControllableVideoCamera)

See NTCIPCameraProtocolHdlr:setLabelText

setLabelText(int num + 2, String title)

Figure 7-24. NTCIPCameraProtocolHdlr:setPresetTitle (Sequence Diagram)

CHART R7 Detailed Design 7-84 03/02/2010

7.3.2.18 NTCIPCameraProtocolhdlr:storePreset (Sequence Diagram)

This diagram shows the processing that occurs when storing a preset on an NTCIP camera

This diagram shows the processing that occurs when storing a preset on an NTCIP camera

CameraOperationalStatus

System(ControllableVideoCamera)

storePreset(short presetNum)

sendMessage(NTCIPCommand.STORE_PRESET, int presetNum)

NTCIPCameraProtocolHdlr

Figure 7-25. NTCIPCameraProtocolhdlr:storePreset (Sequence Diagram)

CHART R7 Detailed Design 7-85 03/02/2010

7.4 NTCIP Camera Compliance Tester

7.4.1 Class Diagrams

7.4.1.1 CameraNTCIPComplianceTesterClasses (Class Diagram)

The ORB and POA are required
to allow the use of a CHART
direct rs232 port, which is normally
served via a port manager on an
FMS server, but is used "in process"
in the compliance tester.

exitApplication(): void

«interface»
CameraApplicationExitListener

«interface»
ORB

«interface»
POA

m_selectedPortType: PortType
m_commPortName: String
m_commPortConfig: CommPortConfig
m_tcpipPortConfig: IPPortLocationData
m_snmpCommunity: String
m_hdlcFrameRequired: boolean
m_deviceDropAddress: int
m_recvInitialTimeoutMillis: int
m_minPanSpeed: int
m_maxPanSpeed: int
m_minTiltSpeed: int
m_maxTiltSpeed: int
m_zoomSpeed: int
m_focusSpeed: int
m_manualFocus: boolean
m_manualIris: boolean
m_minZoomPosition: int
m_maxZoomPosition: int

getter()
setter()
save() : void

CameraCommSettings

«interface»
java.awt.event.ActionListener

main(rgs: String): void

CameraNTCIPComplianceTester

javax.swing.JFileChooser

«interface»
java.awt.event.WindowListener

javax.swing.JFrame

setVisible(visiable boolen): void

CameraNTCIPTesterMainWindow

writeIn(message: String) : void

«interface»
CameraTestResultRecord

CameraContolDevice

CameraTestRunner

CameraCommSettingsDlg

«typedef»
CommPortConfig

pollTest(): void
panLeftTest(): void
panRightTest(): void
panStopTest(): void
tiltDownTest(): void
tiltUpTest(): void
tiltStopTest(): void
zoomInTest():void
zoomOutTest(): void
zoomStopTest():void
focusNearTest(): void
focusFarTest(): void
focusStopTest(): void
irisCloseTest(): void
irisOpenTest(): void
irisStopTest(): void
savePresetTest(): void
moveToPresetTest(): void
manualFocusOnTest(): void
manualFocusOffTest(): void
manualIrisOnTest(): void
manualIrisOffTest(): void
powerOffTest(): void
powerOnTest(): void

CameraTestActivationListener

DataPortUtility

CameraCommSettings

TCPPort

javax.swing.JDialog

NTIPCameraProtocolHdlrConfig

CommandQueue

NTCIPCameraProtocolHdlr

«interface»
QueueableCommand

m_cmd : CameraCommandType
m_listener : CameraTestActivationListener

CameraAsyncCommandExecuter

Poll
PanLeft
PanRight
PanStop
tiltDown
tiltUp
tiltStop
ZoomIn
ZoomOut
ZoomStop
focusNear
focusFar
focusStop
irisOpen
irisClose
irisStop
SavePreset
MoveToPreset
ManualFocusOn
ManualFocusOff
ManualIrisOn
ManualIrisOff
PowerOff
PowerOn

CameraCommandType

1

1

Uses

1

1

Uses

uses

1

1

uses

uses

1

1

uses

uses

1

1

uses

uses

1

1

uses

1 1

1

1

1 1

call on close

1

1
call on close

1

1

1 1

1

1

1

1

11

uses

1

1

uses

1 1

1 1

1

1

1

1

uses when user
 chooses to save result

1

1

uses when user
 chooses to save result

1

1

Figure 7-26 CameraNTCIPComplianceTesterClasses (Class Diagram)

7.4.1.1.1 CameraApplicationExitListener (Class)

This interface is implemented by objects that wish to be notified when the user has

requested to exit the application. This interface was introduced to keep the main

application class from having to implement the awt action listener and window listener

CHART R7 Detailed Design 7-86 03/02/2010

interfaces, most of which do not apply to the main application class (it just needs to know

when the user wants to close).

7.4.1.1.2 CameraAsyncCommandExecuter (Class)

This class is a queueable command used to execute a Camera command asynchronous to

the main GUI thread, allowing the GUI to process events as a test is running. When the

command is run, it notifies the test activation listener based on the command type that was

specified during construction.

7.4.1.1.3 CameraCommandType (Class)

This is an enumeration of the types of commands that can be tested.

7.4.1.1.4 CameraCommSettings (Class)

This class holds communication related settings for the CameraNTCIPComplianceTester.

The settings are persisted in a .props file and are loaded on construction (or set to default

values if .props file doesn't yet exist). The save method saves the settings to a .props file.

Getters and Setters exist for each of the members in this class.

7.4.1.1.5 CameraCommSettingsDlg (Class)

 This class is a dialog that allows the user to modify and save the communications settings

used by the compliance tester.

7.4.1.1.6 CameraNTCIPComplianceTester (Class)

This class contains the main entry point for the NTCIP Camera Compliance tester. Its main

method instantiates an instance of the class, whose constructor initializes the application.

Initialization includes initializing the ORB and POA, instantiating the various setting

objects (which depersist their settings from props files), creating a CameraTestRunner

object (which executes the actual tests on command), and creates the main window used to

interact with the application.

7.4.1.1.7 CameraNTCIPProtocolHdlrConfig (Class)

This class contains configuration values specific to the NTCIPCameraProtocolHdlr.

7.4.1.1.8 CameraNTCIPTesterMainWindow (Class)

This class is the main window for the NTCIP Camera Compliance Tester. It has a JFrame

which it populates with various GUI objects, such as a menu bar with menu items, and a

scroll pane with a text area so it can show test results. It implements the ActionListener and

WindowListener interfaces and handles events for each menu click in addition to the

window closing event that is fired if the user closes the window using the X.

CHART R7 Detailed Design 7-87 03/02/2010

7.4.1.1.9 CameraTestActivationListener (Class)

This interface specifies methods to be implemented by objects that are to be notified when

the user activates a test.

7.4.1.1.10 CameraTestResultRecord (Class)

This interface specifies methods to be implemented by objects that can record the results of

tests.

7.4.1.1.11 CameraTestRunner (Class)

This class provides the capability to execute a test. It is notified when it is time to run a test

through the TestActivationListener interface, and records all results to its associated

CameraTestResultRecorder. This class makes use of existing CHART communications and

protocol handler classes to ensure its tests are using the exact code being used by the

CHART system to perform this functionality. There is no CHART business logic within

this class, it is simply a controller that creates a communications port and passes it to the

CHART protocol handler to perform the requested command.

7.4.1.1.12 CommandQueue (Class)

The CommandQueue class provides a queue for QueueableCommand objects. The

CommandQueue has a thread that it uses to process each QueueableCommand in a first in

first out order. As each command object is pulled off the queue by the CommandQueue's

thread, the command object's execute method is called, at which time the command

performs its intended task.

7.4.1.1.13 CommPortConfig (Class)

This structure is used to pass comm port configuration values during a connection request.

7.4.1.1.14 DataPortUtility (Class)

This class is a wrapper used to hide the underlying port being used to communicate (tcp/ip

,FMS, or CameraControlDevice port).

7.4.1.1.15 DirectPortImpl (Class)

This class implements the DirectPort interface as defined in the IDL. Its connect method

opens a javax.comm.SerialPort object and sets the port settings according to the baud, data

bits, stop bits, and parity that was passed. Its disconnect method closes the

javax.comm.SerialPort. This class also implements the send and receive functions as

specified in the DataPort IDL interface. The send and receive methods use the read and

write methods of the javax.comm.SerialPort object to send and receive bytes on the com

port. While the send method contains little processing other than calling the

javax.comm.SerialPort object's write method, the receive method contains logic that allows

it to receive a burst of bytes before returning. This causes the receive method to return all

available bytes on the port and thus helps to prevent the need for multiple calls to receive

CHART R7 Detailed Design 7-88 03/02/2010

for a single command response. This class updates a timestamp each time send or receive is

called. When its isInactive() method is called, it checks the current time vs. the last

send/receive time and if the difference is greater than the current inactivity timeout, it

returns true.

7.4.1.1.16 java.awt.event.ActionListener (Class)

This interface listens for actions such as when a menu item or button is clicked. For menu

items, it is attached to menu items when the menu is built.

7.4.1.1.17 java.awt.event.WindowListener (Class)

Listener interface that a class must implement for receiving window events

7.4.1.1.18 javax.swing.JDialog (Class)

This class is part of the JDK and provides functionality for dialog windows.

7.4.1.1.19 javax.swing.JFileChooser (Class)

This class is part of the JDK and provides functionality to allow the user to choose a file

from their local file system.

7.4.1.1.20 javax.swing.JFrame (Class)

Java class that displays a frame window.

7.4.1.1.21 NTCIPCameraProtocolHandler (Class)

This object contains the protocol for communication with a NTCIP Camera.

7.4.1.1.22 ORB (Class)

The CORBA ORB (Object Request Broker) provides a common object oriented, remote

procedure call mechanism for inter-process communication. The ORB is the basic

mechanism by which client applications send requests to server applications and receive

responses to those requests from servers.

7.4.1.1.23 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a

CommandQueue for asynchronous execution. Derived classes implement the execute

method to specify the actions taken by the command when it is executed. This interface

must be implemented by any device command in order that it may be queued on a

CommandQueue. The CommandQueue driver calls the execute method to execute a

command in the queue and a call to the interrupted method is made when a

CommandQueue is shut down.

CHART R7 Detailed Design 7-89 03/02/2010

7.4.1.1.24 TCPPort (Class)

This class provides access to a TCP/IP port for device communications.

CHART R7 Detailed Design 7-90 03/02/2010

7.4.2 Sequence Diagrams

7.4.2.1 CameraNTCIPComplianceTester:PanLeft (Sequence Diagram)

This diagram shows the processing that takes place when the user chooses to execute the

pan left test. This sequence is prototypical of all tests that may be executed, with slight

variations as pointed out below.When the user clicks one of the test menu items, the main

window is notified via its ActionListener interface via the actionPerformed() method.The

main window's actionPerformed() method determines which test was selected based on the

menu item name and creates an AsyncCommandExecuter using the appropriate

CommandType enumeration value.This AsyncCommandExecuter is then added to the

CommandQueue where it will be executed asynchronously, and the actionPerformed()

method returns, allowing the GUI to remain responsive to events (such as the update of its

text area where it shows test progress). The CommandQueue calls the

AsyncCommandExecuter execute() method which calls the proper TestActivationListener

method based on the command type specified during construction of the

AsyncCommandExecuter. The TestRunner, which implements the TestActivationListener,

performs processing specific to the test that was activated. In the diagram, the pollNow test

is shown, however processing for the other tests is very similar.The TestRunner first gets a

connected port. The type of port and the specifics of how the connection is made are based

on the settings specified in the CommSettings object. When this method returns, either a

direct RS232 port is available for use or a TCP/IP port is ready. If any error occurred while

connecting, the test result listener is notified and the test ends. Otherwise, an NTCIP

protocol handler is created and the appropriate method is called to execute the desired test.If

the test succeeds an appropriate message (or messages) are passed to the TestResultListener

via the writeln() method. In the case of a pan left test, the current status is also sent to the

TestResultListener for display to the user. Similarly, if the test fails, one or more messages

are written to the TestResultListener via the writeln() method. The TestResultListener is

the main window, and its writeln method writes data to its text area which allows the user to

track test progress.

CHART R7 Detailed Design 7-91 03/02/2010

wtiteIn("Camera is not connected")
[Exeption]

writeIn("Pan Left..."

camerastatus or Exeption

[Exception]
writeIn("FAILED + Exception")

CameraNTCIPTesterMainWindow
(ActionListener Interface)

CommandQueue

CameraAsyncCommandExecuter

CameraTestRunner

CameraNTCIPTesterMainWindow
(CameraTestListener interface)

DataPortUtility

CameraNTCIPProtocolHandler

CameraNTCIPProtocolConfig

actionPerformed()

create

addCommand()

execute()

panLeft

writeIn("Test Pan Left")
If [! connected]

create()

creat()

create()

setConfig()

getStatus()

[success]
writeIn("SUCCESS" + CameraStatus data)

User clicks the
Pan Left test menu
item, causing action
event to be fired.

user

Figure 7-27. CameraNTCIPComplianceTester:PanLeft (Sequence Diagram)

CHART R7 Detailed Design 7-92 03/02/2010

7.5 Device Utility

7.5.1 Class Diagrams

7.5.1.1 DeviceUtility (Class Diagram)

This class diagram shows utility classes that are useful for tasks in performing device

control.

CHART R7 Detailed Design 7-93 03/02/2010

*

ConnectedPortInfo

PortManagerListEntry

«typedef»

MessageQueue

*

New for R7. The majority of methods
contain refactored code from the dms ntcip
protocol handler

NTCIPUtility

1

1

1

returns connected port in

*

1

1

1

1

1

1

1

PortLocator

CommFailureData

ModemPortLocator

PortLocationData

«typedef»

ArbQueueEntry

«valuetype»

1

1

*

ArbQueueEntryDesc

«typedef»

ArbQueueEntryDesc

«typedef»

ArbQueueSubEntryDesc

«datatype»

ArbQueueSubEntryDesc is new
for R2B3.

*1

1

1

Subtypes include
DMSArbitrationQueue and
HARArbitrationQueue.

ArbitrationQueueEnabled

ArbQueueEntryKey

«typedef»

ArbQueueEntryIndicator

«datatype»

ArbitrationQueue

1

m_deviceIDs, m_useAllDevices, and
corresponding get/set methods are
new for R2B3.

1

subDeviceStatusChange() is new for R2B3.

VoicePortLocator

CommFailureCode

CommFailureDB

key:ArbQueueEntryKey
priority:double
msgDesc:string
isActive:boolean
deviceStatus:ArbQueuSubEntryDesc[]
entryValid:boolean

+deactivateAll(AccessToken,message:String):void
+getActiveKeys():ArbQueueEntryKey[]
+getRPIExecutionStatus():RPIExecutionStatus[]
#addEntryInit(deviceImpl:Object,AccessToken,ArbQueueEntry):void
#getDeletedActiveEntryKeys():Set
#getQueuedCommands():QueueableCommand#getRequestID():int
#queueInit(action:String):void
#requestFailed(deletedKeys:Set,newEntries:ArbQueueEntry[],
 oldMessageGone:boolean):void
#requestSuccessful(deletedKeys:Set,newEntries:ArbQueueEntry[]):void
#setMessage(AccessToken,Message,ArbQueueEntry[],reqID:int):void
#setMessageImpl(AccessToken,Message,ArbQueueEntry[],
 commandThatExecutesMe:QueueableCommand,reqID:int):void
#subDeviceStatusChange(text:string,
 deviceStatus:ArbQueueSubEntryDesc):void
#validateEntries(purgeInvalid:boolean):boolean
#validateEntry(ArbQueueEntry):void
#validateEntryOwner(ArbQueueEntry):void

deviceID:Identifier
isActive:boolean

byte[] m_ownerID
byte[] m_pwnerSubID
ArbQueueEntryType m_type

MessageQueue(byte[] deviceID, String deviceName,
 boolean depersisting, ORB orb)
+addEntry(levelArbQueuePriorityLevel,entry:ArbQueueEntry):void
+assignPriority(key:ArbQueueEntryKey,priority:double):void
+changePriority(key:ArbQueueEntryKey,priority:double):void
-checkValidPriority(priority:double):boolean
-dePersist():boolean
+modifyEntry(AccessToken, modifyEntry:ArbQueueEntry):void
+getEntries():ArbQueueEntryList
-getPriorityFallsInLevel(priority:double):ArbQueuePriorityLevel
#persist():void
-reassignPriorityInLevel(level:ArbQueuePriorityLevel):void
-setPriority(key:ArbQueueEntryKey,priority:double):void
+removeEntry(ArbQueueEntryKey removeEntryKey):void
+validateEntries(purgeUnresolved:boolean): boolean
-depersist(): void
-persist(): void

m_messageQueue:Vector
m_deviceID:Identifier
m_deviceName:String

key:ArbQueueEntryKey
priority:double
msgDesc:string
isActive:boolean
deviceStatus:ArbQueuSubEntryDesc[]
entryValid:boolean

+get(OID oid, DataPortUtility port,boolean convertToUTF8):string
+set(OID oid, DataPortUtility port, boolean convertToUTF8)
-getOIDToOEREncodedByteCmd(OID oid):byte[]
-sendPMPP(byte[] buffer, int requestID, DataPortUtility port, boolean convertToUTF8)
-sendSNMPP(byte[] buffer, int requestID, DataPortUtility port, boolean convertToUTF8)
-createUnnumberedPollMessage(int number)

m_address:int
m_community:string
m_initialTimeout:int
m_interCharTimeout:int
m_responseTimeout:int
m_hdlcFramingRequired:bool
m_logFile:LogFIle

ArbQueueEntryKey m_key
EntryOwner m_entryOwner

getDeviceIDs():Identifier[]
getOwner():EntryOwner
getOwnerID():Identifier
getKey():ArbQueueEntryKey
getOpCenterID():Identifier
getOpCenterName():string
getHostName():string
getUseAllDevices():boolean
getUserName():string
getMessage():Message
getPriority():double
setDeviceIDs(Identifier[]):void
setHostName(string hostName):void
setIndicator(ArbQueueEntryIndicator data) : void
setOpCenterID(Identifier opCenterID):void
setOpCenterName(string opCenterName):void
setPriority(double newpriority):void
setUseAllDevices(boolean):void
setUserName(string userName):void
validate():EntryValidStatus

m_entryOwner: EntryOwner
m_indicator: ArbQueueEntryIndicator
m_useAllDevices: boolean
m_deviceIDs: Identifier[]
m_message: Message
m_priority: double
m_hostName: string
m_opCenterID: Identifier
m_opCenterName: string
m_userName: string

PortLocator(CommFailureDB):PortLocator
+abstract getConnectedPort(String opDescription,
 CommandStatus):ConnectedPortInfo
+abstract releaseConnectedPort(ConnectedPortInfo):void

static int CONN_RSLT_OK;
static int CONN_RSLT_FAIL_RETRY;
static int CONN_RSLT_FAIL_NO_RETRY;

PortManagerCommsList m_prtManagerList
PortType m_portType;
int m_portWaitTimeSecs;

+VoicePortLocator(portLocationData, orb, traderGroup,commFailureDB)
#connectPort(connPortInfo, portManagercommsData,opDesc,tryNum,
 cmdStat, complete, errorMsgToAppend):int
-rspCodeToString(rspCode):String

+ModemPortLocator(portLocationData,orb,traderGroup,commFailureDB)
#connectPort(connPortInfo, portManagercommsData,opDesc,tryNum,
 cmdStat, complete, errorMsgToAppend):int
-rspCodeToString(rspCode):String

-m_commPortconfig:CommPortconfig

+abstract toString():String

m_portWrapper:DataPortUtility

String m_portMgrName;
PortManager m_portMgrRef;

addCommFailureLogEntry(CommFailureData):void

DBConnectionManager dbConnMgr

String portManagerName
PortType portType
String portName
int failureCode
int modemResponseCode
String logText

SOFTWARE_ERROR
ACQUIRE_PORT_MGR_NOT_AVAILABLE
ACQUIRE_PORT_TYPE_NOT_SERVED
ACQUIRE_NO_PORTS_AVAILABLE
CONNECT_GENERAL_FAILURE
CONNECT_MODEM_NOT_RESPONDING
CONNECT_PORT_OPEN_FAILURE
CONNECT_MODEM_CONNECT_FAILURE

Figure 7-28. DeviceUtility (Class Diagram)

CHART R7 Detailed Design 7-94 03/02/2010

7.5.1.1.1 ArbitrationQueue (Class)

This is an abstract implementation of a generic device arbitration queue. It basically

implements of the ArbitrationQueue CORBA interface (shown as ArbitrationQueueEnabled

in this design). However, the official implmenters of ArbitrationQueue

(ArbitrationQueueEnabled) interface are the devices themselves, CHART2DMSImpl and

HARImpl. All ArbitrationQueue types of operations are delegated to an instance of this

ArbitrationQueue class (one per physical device, i.e., one per instance of a device Impl

class). There are device-specific concrete extensions of ArbitrationQueue for DMS and

HAR, namely, DMSArbitrationQueue and HARArbitrationQueue. These provide device-

specific variation.

7.5.1.1.2 ArbitrationQueueEnabled (Interface)

(This interface, defined in the design in SystemInterfaces/DeviceManagement, is called

ArbitrationQueue in the code, but cannot be called ArbitrationQueue in the design because

there is also an ArbitrationQueue abstract class.) An ArbitrationQueue is a queue that

arbitrates the usage of a device. The evaluation of the queue determines which message(s)

should be on the device, based upon the priority of the queue entries. When entries are

added to the queue, they are assigned a priority level based on the type of traffic event with

which they are associated, and also upon the current contents of the queue. The priority of

the queue entries can be modified after they are added to the queue. The queue is evaluated

when the device is online and queue entries are added or removed, when an entry's priority

is modified, or when the device is put online.

7.5.1.1.3 ArbQueueEntry (Class)

This class is used for an entry on the arbitration queue, for a single message, and for a

single traffic event. (It is possible, in the case of HARNotifierArbQueueEntry objects, that

certain ArbQueueEntries can be on behalf of multiple TrafficEvents. In such cases, one

TrafficEvent among all those involved is picked to be the responsible TrafficEvent stored in

m_indicator, the ArbQueueEntryIndicator for the entry.)

7.5.1.1.4 ArbQueueEntryDesc (Class)

This structure is used to provide a description of an entry on the arbitration queue.

7.5.1.1.5 ArbQueueEntryIndicator (Class)

The ArbQueueEntryIndicator contains data necessary to specify a unique ArbQueueEntry

object; in addition, it contains a reference to the TrafficEvent which is responsible for the

entry.

7.5.1.1.6 ArbQueueEntryKey (Class)

This class contains the Traffic Event ID and RPI ID and is used to identify a specific

ArbQueueEntry. In some cases (e.g., for HARNotifierArbQueueEntry objects), the RPI ID

is the string representing a null Identifier.

CHART R7 Detailed Design 7-95 03/02/2010

7.5.1.1.7 ArbQueueSubEntryDesc (Class)

This structure holds ArbQueueEntry "device-level detail for one "sub-device (such as a

constituent HAR within a SyncHAR). It holds the ID of the device and an indication as to

whether the entry is active for this particular subdevice. An ArbQueueEntry for a

conglomerate device (such as a SyncHAR) will contain a list of these structures, one for

each constituent HAR the entry is destined for.

7.5.1.1.8 CommFailureCode (Class)

This class defines static values to be used to specify the type of comm failure in a

CommFailureData object.

7.5.1.1.9 CommFailureData (Class)

This class holds data to be passed to the CommFailureDB class to be logged in the Comm

failure log in the database.

7.5.1.1.10 CommFailureDB (Class)

This class is a utility used to log an entry in the Comm Failure log table in the database.

This table is used to log details about any comm failure that occurs in the system.

7.5.1.1.11 ConnectedPortInfo (Class)

This class holds data pertaining to a port that was acquired and connected via the

PortLocator.

7.5.1.1.12 MessageQueue (Class)

This class represents a message queue object. It will provide the ability to add, remove, and

reprioritize traffic event entries in a prioritized list.

7.5.1.1.13 ModemPortLocator (Class)

This class provides an implementation of the PortLocator's abstract connectPort() method

that can connect a ModemPort that has been acquired by the PortLocator base class. This

derived class logs information in the comm failure database table relating to connection

problems that may occur.

7.5.1.1.14 NTCIPUtility (Class)

This class contains common utility methods for NTCIP device communications. A large

portion of this class is methods refactored from the NTCIP DMS protocol handler

implementation.

7.5.1.1.15 PortLocationData (Class)

This class contains configuration data that specifies the communication server(s) to use to

communicate with a device.

CHART R7 Detailed Design 7-96 03/02/2010

m_commsData - One or more objects identifying the communications server (PortManager)

to use to communicate with the device, in order of preference.

m_portType - The type of port to use to communicate with the device (ISDN modem,

POTS modem, direct, etc.)

m_portWaitTimeSecs - The maximum number of seconds to wait when attempting to

acquire a port from a port manager.

7.5.1.1.16 PortLocator (Class)

The PortLocator is a utility class that helps one to connect to the port used by the device.

The actual implementation of the operations is done by the derived classes depending on

what protocol is used for communication.

7.5.1.1.17 PortManagerListEntry (Class)

This class is used by the PortLocator to map object identifiers to object references for

PortManager objects.

7.5.1.1.18 VoicePortLocator (Class)

This class provides an implementation of the PortLocator's abstract connectPort() method

that can connect a VoicePort that has been acquired by the PortLocator base class. This

derived class logs information in the comm failure database table relating to connection

problems that may occur. Since this is a telephony port which is much simpler to connect

than, say, a ModemPort, there will be considerably fewer types of errors which can occur

and thus be detected and reported.

CHART R7 Detailed Design 7-97 03/02/2010

7.5.1.2 PortLocatorClasses (Class Diagram)

This class diagram shows utility classes that can be used to get a free port.

1

1

1

R7: The DataPortUtility is
updated to include the ability
to wrap a DataPortEnabled port (java
interface) depending on the device
configuration. All the device
calls should go to the dataportwrapper
that redirects the call to the
correct port. Also added utility receive methods.

1

DataPortUtility

TCPPortLocator

FMSPortLocator

CommFailureData

CommFailureCode

PortLocator

VoicePortLocator ModemPortLocator

PortLocationData
«typedef»

ConnectedPortInfo

PortManagerListEntry
«typedef»

CommFailureDB

1 1

returns connected port in

1 *

1

*

1
1

1

FMSConnectedPortInfo

DataPortUtility

1

0..11

TCPIPPort

TCPConnectedPortInfo

0..1

*

Port
«interface»

DataPortEnabled
«interface»0..1

1

addCommFailureLogEntry(CommFailureData):void

DBConnectionManager dbConnMgr

String portManagerName
PortType portType
String portName
int failureCode
int modemResponseCode
String logText

PortLocator(CommFailureDB):PortLocator
+abstract getConnectedPort(String opDescription,
 CommandStatus):ConnectedPortInfo
+abstract releaseConnectedPort(ConnectedPortInfo):void

static int CONN_RSLT_OK;
static int CONN_RSLT_FAIL_RETRY;
static int CONN_RSLT_FAIL_NO_RETRY;

SOFTWARE_ERROR
ACQUIRE_PORT_MGR_NOT_AVAILABLE
ACQUIRE_PORT_TYPE_NOT_SERVED
ACQUIRE_NO_PORTS_AVAILABLE
CONNECT_GENERAL_FAILURE
CONNECT_MODEM_NOT_RESPONDING
CONNECT_PORT_OPEN_FAILURE
CONNECT_MODEM_CONNECT_FAILURE

FMSPortLocator(portlocationdata,orb,lookup,commfailureDB):FMSPortLocator
+getConnectedPort(opDescription,commandStatus):ConnectedPortInfo
+releaseConnectedPort(connectedPortInfo):void
-getPort(portManagerName):Port
#abstract connectPort(connPortInfo, portManagercommsData,opDesc,tryNum,
 cmdStat, complete, errorMsgToAppend):int

m_portManagerRefList:Vector
m_orb:org.om.CORBA.ORB
m_lookup:org.omg.CosTrading.Lookup

+abstract toString():String

m_portWrapper:DataPortUtility

+VoicePortLocator(portLocationData, orb, traderGroup,commFailureDB)
#connectPort(connPortInfo, portManagercommsData,opDesc,tryNum,
 cmdStat, complete, errorMsgToAppend):int
-rspCodeToString(rspCode):String

DataPortWrapper(connectedPortInfo):DataportWrapper
send(dataBytes:byte[])throws DataPortIOException()
receive(initial:int,interChar:int,maxRead:int):byte[] throws DataPortIOException
+receiveFromTCPPort(stream:InputStream, initial:int, interChar:int,maxRead:int):byte[]
+receiveFromDirectPort(stream:InputStream, initial:int, interChar:int,maxRead:int):byte[]

m_tcpPort:TCPIPPort
m_fmsPort:Port
m_dataPortEnabledPort:DataPortEnabled

+toString():String

m_portName:String
m_portMgr:PortManager
m_portMgrName:String

PortManagerCommsList m_prtManagerList
PortType m_portType;
int m_portWaitTimeSecs;

String m_portMgrName;
PortManager m_portMgrRef;

+toString():String

m_ipAddress : String
m_tcpPort : TCPIPPort
m_tcpPortNumber : int

+ModemPortLocator(portLocationData,orb,traderGroup,commFailureDB)
#connectPort(connPortInfo, portManagercommsData,opDesc,tryNum,
 cmdStat, complete, errorMsgToAppend):int
-rspCodeToString(rspCode):String

-m_commPortconfig:CommPortconfig

+TCPPortLocator(ipportLocationData):
 TCPLocator
+getConnectedPort(opDescription, commandStatus):
ConnectedPortInfo
+releaseConnectedPort(connectedPortInfo):void
-connectPort(connPortInfo,opDesc,tryNum,cmdStat,
 complete,errorMsgtoAppend):int

getStatus():PortStatus
disconnect():void

+send(byteMessage: byte[]
+receive(initial:int, interchar:int, maxDuration:int)

TCPPort(ipAddress, tcpPort):TCPIPPort
+connect(IPPortLocationData):void throws PortOpenFailure,CHART2Exception
+send(dataBytes:byte[])throws DataPortIOException()
+receive(timeoutMillis):byte[] throws DataPortIOException
+receive(int initial, int interchar, int maxDuration)throws DataPortIOException()
+disconnect()throws DisconnectException()CHART2Exception()
+getPortType():PortType
+getPortStatus():PortStatus

m_ipAddress:String
m_tcpPort:int
m_socket:Socket
m_inputStream:InputStream
m_outputStream:OutputStream

Figure 7-29. PortLocatorClasses (Class Diagram)

CHART R7 Detailed Design 7-98 03/02/2010

7.5.1.2.1 CameraControlDevice (Class)

The CameraControlDevice interface is implemented by classes which provides

communications for access to control functions for a video camera. This includes encoders,

command processors, and direct COM ports.

7.5.1.2.2 CommFailureCode (Class)

This class defines static values to be used to specify the type of comm failure in a

CommFailureData object.

7.5.1.2.3 CommFailureData (Class)

This class holds data to be passed to the CommFailureDB class to be logged in the Comm

failure log in the database.

7.5.1.2.4 CommFailureDB (Class)

This class is a utility used to log an entry in the Comm Failure log table in the database.

This table is used to log details about any comm failure that occurs in the system.

7.5.1.2.5 ConnectedPortInfo (Class)

This class holds data pertaining to a port that was acquired and connected via the

PortLocator.

7.5.1.2.6 DataPortEnabled (Class)

This interface is implemented by device specific communications classes. This interface

provides an extra layer to remove dependencies on device specific packages.

7.5.1.2.7 DataPortUtility (Class)

This class is a wrapper used to hide the underlying port being used to communicate (tcp/ip

,FMS, or CameraControlDevice port).

7.5.1.2.8 FMSConnectedPortInfo (Class)

This structure defines the data used to store and exchange information about a connected

port. It is returned from the PortLocator's getConnectedPort() method and is passed back

into the PortLocator's release() method when it is time to release the port.

7.5.1.2.9 FMSPortLocator (Class)

The FMSPortLocator is a utility class that helps one to utilize the fault tolerance provided

by the deployment of many PortManagers. The FMSPortLocator is initialized by

specifying a preferred PortManager and optionally one or more alternate PortManagers

using a PortLocationData object.

When asked to get a connected port, the PortLocator first attempts to acquire a port from

CHART R7 Detailed Design 7-99 03/02/2010

the preferred PortManager and then calls its abstract connectPort() method (implemented by

derived classes) to attempt to connect to the port. If a failure occurs, the FMSPortLocator

retries the sequence using the next PortManager in the list. The list may contain the same

port manager multiple times to have retries occur on the same port manager prior to moving

to another. In the event that the FMSPortLocator will perform a retry on the same port

manager, it holds the previously acquired port while performing the retry to avoid having

the port manager return the same port during the retry. When a different port is acquired

during a retry on the same port manager, the port is released (prior to connecting the 2nd

port).

7.5.1.2.10 ModemPortLocator (Class)

This class provides an implementation of the PortLocator's abstract connectPort() method

that can connect a ModemPort that has been acquired by the PortLocator base class. This

derived class logs information in the comm failure database table relating to connection

problems that may occur.

7.5.1.2.11 Port (Class)

A Port is an object that models a physical communications resource. Derived interfaces

specify various types of ports. All ports must be able to supply their status when requested.

7.5.1.2.12 PortLocationData (Class)

This class contains configuration data that specifies the communication server(s) to use to

communicate with a device.

m_commsData - One or more objects identifying the communications server (PortManager)

to use to communicate with the device, in order of preference.

m_portType - The type of port to use to communicate with the device (ISDN modem,

POTS modem, direct, etc.)

m_portWaitTimeSecs - The maximum number of seconds to wait when attempting to

acquire a port from a port manager.

7.5.1.2.13 PortLocator (Class)

The PortLocator is a utility class that helps one to connect to the port used by the device.

The actual implementation of the operations is done by the derived classes depending on

what protocol is used for communication.

7.5.1.2.14 PortManagerListEntry (Class)

This class is used by the PortLocator to map object identifiers to object references for

PortManager objects.

CHART R7 Detailed Design 7-100 03/02/2010

7.5.1.2.15 TCPIPPort (Class)

This class provides access to a TCP/IP port for device communications.

7.5.1.2.16 TCPConnectedPortInfo (Class)

This structure defines the data used to store and exchange information about a connected

port. It is returned from the PortLocator's getConnectedPort() method and is passed back

into the PortLocator's release() method when it is time to release the port.

7.5.1.2.17 TCPPortLocator (Class)

TCPPortLocator is a utility class that helps to establish and manage connection to a tcpip

port.

7.5.1.2.18 VoicePortLocator (Class)

This class provides an implementation of the PortLocator's abstract connectPort() method that

can connect a VoicePort that has been acquired by the PortLocator base class. This derived class

logs information in the comm failure database table relating to connection problems that may

occur. Since this is a telephony port which is much simpler to connect than, say, a ModemPort,

there will be considerably fewer types of errors which can occur and thus be detected and

reported.

CHART R7 Detailed Design 7-101 03/02/2010

7.5.2 Sequence Diagrams

7.5.2.1 DataPortUtility:receive (Sequence Diagram)

This diagram shows the processing that occurs when a protocol handler or device utility

class calls the receive method. Depending on the instantiation, the method will receive data

over an fms, tcp, or CameraControlDevice port.

throws IOException

byte[] response

byte[] response

byte[] response

byte[] response

System (ProtocolHdlr or Utility Class)

This diagram shows the processing that occurs when a protocol handler or device utility class calls the receive method.
Depending on the instantiation, the method will receive data over an fms, tcp, or DataPortEnabled port.

DataPortUtility TCPPort Port DataPortEnabledDataPortHelper

receive

[is TCPPort]
receive(initial,interchar, maxDuration)

[error]
throws TCPPortIOException

[is FMSPort]
narrow

return Port

receive(initial,interchar, maxDuration)
[error]

throws DataPortIOException

[is DataPortEnabled Port]
receive(initial, interchar, maxDuration)

[error]
throws Exception

Figure 7-30. DataPortUtility:receive (Sequence Diagram)

CHART R7 Detailed Design 7-102 03/02/2010

7.5.2.2 DataPortUtility:receiveFromDirectPort (Sequence Diagram)

This diagram shows the processing that occurs when data is received over a comm port

such as a DirectPort or a CameraControlDevice com port. This method contains refactored

code from DirectPortImpl to facilitate code reuse between DataPortUtility and

DirectPortImpl.

receiveFromDirectPort(Port port, int initialMillis,
int interCharMillis, int maxReadDuration, int maxBytes) getInputStream()

enableReceivethreshold(1)

return InputStream

return bytesRead[]

[error]
throws Exception

Read until one of the following:
numBytesRead = 0
time reading > maxReadDuration
numBytesRead >= maxBytes

read(rcvBuffer,numBytesRead,1)
returns 0 or 1

InputStream

getInputStream()
returns InputStream

read(rcvBuffer, 0, 1)
returns 0 or 1[first byte not read]

return 0 enableReceiveTimeout(interCharTimeout)

enableReceiveTimeout(initialTimeout)

System

This diagram shows the processing that occurs when data is received over a comm port such as
a DirectPort or a CameraControlDevice com port. This method contains refactored code from DirectPortImpl
to facilitate code reuse between serial port based communication using the DataPortUtility class.

DataPortUtility Port

Figure 7-31. DataPortUtility:receiveFromDirectPort (Sequence Diagram)

CHART R7 Detailed Design 7-103 03/02/2010

7.5.2.3 DataPortUtility:receiveFromTCPPort (Sequence Diagram)

This diagram shows the processing that occurs when data is received over a comm port

such as an Encoder or a TCP port. This method contains refactored code from TCPPort to

facilitate code reuse between tcp based port communications using the DataPortUtility

class.

dataComingIn
&& bytesAvail < maxBytes
&& millisPassed < maxReadDuration

receiveFromTCPPort(InputStream stream, int initialMillis,
int interCharMillis, int maxReadDuration, int maxBytes)

available()
returns num bytes

[while]

[no bytes available]
TCPPortIOException

read(buffer,0, bytesAvailable)
numbytesRead

[while]

write(buffer)

[error]
Exception

return response byte[]

ByteArrayOutputStreamnew

System

This diagram shows the processing that occurs when data is received over a tcp based port such as an Encoder
or a TCPPort. This method contains refactored code from the TCPPort class to facilitate code reuse between
tcp port based communications using the DataPortUtility class.

DataPortUtility
InputStream

wait for initial byte
numAvailable == 0
&& millisPassed <=initialMillis
&& millisPassed <= maxReadMilli]

Figure 7-32. DataPortUtility:receiveFromTCPPort (Sequence Diagram)

CHART R7 Detailed Design 7-104 03/02/2010

7.5.2.4 DataPortUtility:send (Sequence Diagram)

This diagram shows the processing that occurs when a protocol handler or device utility

class calls the send method. Depending on the instantiation, the method will send data over

an fms, tcp, or encoder port.

[error]
throws Exception

TCPPort Port DataPortEnabledDataPortHelper

[is TCPPort]
send(byte[] buffer)

[error]
throws TCPPortIOException

[is FMSPort]
narrow

return Port

send(byte[] buffer)

[error]
throws DataPortIOException

[is DataPortEnabled Port]
send(byte[] buffer)

[error]
throws IOPortException

System (ProtocolHdlr or Utility Class)

This diagram shows the processing that occurs when a protocol handler or device utility class calls the send method.
Depending on the instantiation, the method will send data over an fms, tcp, or DataPortEnabled port.

DataPortUtility

send

Figure 7-33 DataPortUtility:send (Sequence Diagram)

CHART R7 Detailed Design 7-105 03/02/2010

7.5.2.5 NTCIPUtility:get (Sequence Diagram)

This diagram shows the processing that occurs when an NTCIP device calls the get method

to retrieve a device mib value. This code is refactored from the NTCIPDMSProtocolHdlr

for use by all NTCIP devices.

See NTCIPUtility ::getOEREncodedBy teComd

System (Device Utility or Protocol Handler)

This diagram shows the processing that occurs when an NTCIP dev ice calls the get method
to retriev e a dev ice mib v alue. This code is ref actored f rom the NTCIPDMSProtocolHdlr
f or use by all NTCIP dev ices.

[error]
Exception

getOEREncodedBy teCmd(OID oid)

get(OID oid, DataPortUtility port)

NTCIPUtility

UnsupportedEncodingException
Inv alidFrameException
DataPortIOException
PmppErrorException
NoResponseException
IOException
TCPPortIOException
CHART2Exception [HDLC Framing required]

sendPMPP(buf f er, req, port)

[! HDLC Framing required]
sendSNMP(buf f er, req, port)

String response

Figure 7-34. NTCIPUtility:get (Sequence Diagram)

CHART R7 Detailed Design 7-106 03/02/2010

7.5.2.6 NTCIPUtility:getOEREncodedByteCommand (Sequence Diagram)

This method shows the processing that occurs when generating the raw ntcip byte array

command. The command is either an SnmpPdu or Pmpp request. This method contains

refactored code from the NTCIP DMS implementation.

SnmpPdu

NTCIPUtility

This method shows the processing that occurs when generating the raw ntcip byte array command. The command
is either an SnmpPdu or Pmpp request. This method contains refactored code from the NTCIP DMS implementation.

getRawValue()

new(m_address,oid,rawValue,m_community)

[Requires HDLC
Framing]

new PmppRequest

int offset

encodeASN(byte[] buffer, int len, new BEREncoder())

int length

PmppRequest

System(NTCIPUtility or
 NTCIPCameraProtocolHdlr)

encodePmpp(buffer,0, new HDLCEncoder())

return byte[] cmdBuffer

return String rawValue

new SnmpPdu

return byte[] cmdBuffer

new(oid,rawValue, m_community)

getOEREncodedByteCommand(OID oid)

OID

Figure 7-35. NTCIPUtility:getOEREncodedByteCommand (Sequence Diagram)

CHART R7 Detailed Design 7-107 03/02/2010

7.5.2.7 NTCIPUtility:set (Sequence Diagram)

This diagram shows the processing that occurs when an NTCIP device calls the set method

to update a device mib value or issue a command. This code is refactored from the

NTCIPDMSProtocolHdlr for use by all NTCIP devices.

See NTCIPUtility::getOEREncodedByteCommand
System (Device Utility or Protocol Handler)

set(OID oid, DataPortUtility port)

[error]
Exception

getOEREncodedByteCommand(Oid oid)

UnsupportedEncodingException
InvalidFrameException
DataPortIOException
PmppErrorException
NoResponseException
IOException
TCPPortIOException
CHART2Exception

NTCIPUtility

This diagram shows the processing that occurs when an NTCIP device calls the set method
to update a device mib value or issue a command. This code is refactored from the NTCIPDMSProtocolHdlr
for use by all NTCIP devices.

[no HDLC framing required]
sendSNMP(buffer, req, port)

[requires HDLC framing]
sendPMPP(buffer, req, port)

Figure 7-36. NTCIPUtility:set (Sequence Diagram)

CHART R7 Detailed Design 8-1 03/02/2011

8 Use Cases – SCAN Weather Integration

The use case diagrams depict new functionality for the SCAN Weather Integration feature and

also identify existing features that will be enhanced. The use case diagrams for the SCAN

Weather Integration feature exist in the Tau design tool in the Release7 area. The sections below

indicate the title of the use case diagrams that apply to this feature.

CHART R7 Detailed Design 8-2 03/02/2011

8.1 R7HighLevel (Use Case Diagram)

This diagram shows the high level use cases for features added or modified as part of R7.

Configure

Video Sources

Manage Camera

Operator

System

MODIFIED FOR R7

NEW FOR R7

Configure TSS

View TSS on Map

Export TSS Data

Administrator

Configure Weather Settings

Provide Weather

Data to Internal Applications

NEW FOR R7

Retrieve Weather Data

From SCAN

Manage Traffic Events

«include»

Figure 8-1. R7HighLevel (Use Case Diagram)

CHART R7 Detailed Design 8-3 03/02/2011

8.1.1 Configure TSS (Use Case)

New in R7, a user can edit the map display options for a TSS. A user can specify a bearing

for the TSS that is used to orient the TSS zone groups when they are displayed on the maps.

A user can specify whether a zone group should be displayed on maps. If a user specifies

that a zone group should be displayed on the maps, the zone group can be configured to

display either in the direction of the TSS bearing or in the opposite direction (180 degrees

opposed) of the TSS bearing. A user can specify the order in which zone groups should

appear on the maps. Zone groups with lower display order values will appear on the map

closer to the TSS lat/lon position.

8.1.2 Configure Video Sources (Use Case)

The system allows an administrator with the Configure Camera right to configure video

sources in the CHART system. Video Sources include generic unspecified video sources,

"No Video Available" sources, fixed cameras, and controllable cameras including COHU,

Vicon, and NTCIP cameras. The system allows an administrator to configure multiple

video sending devices for the video source.

8.1.3 Configure Weather Settings (Use Case)

The administrator will be able to configure the maximum distance from a roadway traffic

event that a weather station can be to be included in the pre-selection of the road surface

condition for a traffic event. (This is also referred to as a "cutoff radius"). The

administrator will be able to configure the maximum age that a weather station data can

have and still be included in the pre-selection of the road surface condition for a traffic

event.

8.1.4 Export TSS Data (Use Case)

The system shall provide detector data to external systems. The system shall enforce

granular, organization based user rights to allow the level of detail provided for a detector

to be controlled. Two user rights (View Detailed VSO and View Summary VSO) will be

used to determine if a detector's detailed volume, speed, and occupancy (VSO) data is

exported, only a speed range, or no VSO data. When VSO data is provided for a detector, it

will include the data for zone groups and for each zone within the group. New for R7,

CHART will export map display options for each detector including: bearing, zone group

display direction, and zone group display order. The detector data will be provided using

the TMDD standard, with CHART extensions as needed. External systems can obtain an

inventory and status of all CHART system detectors, or the ones that have changed in a

certain lookback time period. They can obtain updates to the detector data (including the

status) periodically with on-demand request or by subscribing to receive updates at a

specified web service URL.

CHART R7 Detailed Design 8-4 03/02/2011

8.1.5 Manage Camera (Use Case)

An operator with the correct functional rights may perform basic operations on a camera.

Please refer to the Manage Camera Use Case diagram for more detailed information.

8.1.6 Manage Traffic Events (Use Case)

This diagram models the actions that an operator may take that relate to traffic events. This

includes responding to traffic events using field devices. New in R7, the system will pre-

select the road surface condition based on data from the nearest weather station with recent

data when the traffic event is opened. The operator can view the weather station that was

used to make the automatic selection. The weather station data will be logged to the event

history log when the event is opened and again when it is closed. Just as in previous

releases, the user may manually select the road surface condition while the event is open.

8.1.7 Provide Weather Data to Internal Applications (Use Case)

The system will provide an interface to be used by internal applications to obtain weather

related data based on location.

8.1.8 Retrieve Weather Data From SCAN (Use Case)

The system will retrieve weather related data from SCAN for the purpose of making it

available to internal applications.

8.1.9 View TSS on Map (Use Case)

The home page map shall include map layers to allow the user to view TSSs. TSS layers are

shown on separate overlay layers with a separate layer for CHART TSSs and separate

layers for TSSs from each external agency. The TSS layers should be below all other device

layers and above the Exits/Mileposts layer. Any TSS that has a defined point location can

be viewed on the home page map by clicking a link on the details page for the device.

CHART R7 Detailed Design 8-5 03/02/2011

8.2 ManageTrafficEvents (Use Case Diagram)

This diagram models the actions that an operator may take that relate to traffic events.

«uses»

«uses»

«extends»

Export Pr ior ity
Event List

View Prior ity
Event List

Query Nearby
Weather Station Data

Modified for R7.

Preselect
Road Surface

Condition

New for R7.

Change Event
Attr ibutes

Add Text to
Event History

Change Event
Type

Respond to
Traffic Event

Modify
Traffic Event

Close Event

Record Resource
Notification And

Arrival

Specify
Event

Location

See
CreateTrafficEvent
Use Case DiagramSee

MergeTrafficEvents
Use Case Diagram.

Copy
Traffic
Event

System

View Potential
Duplicate Events

Get Event
History Text

Search EORS Permits

View Lane Configuration
and Status Textually

Specify
WebsiteTraffic Alert

Settings

Set EORS Permit
for Planned Roadway

Closure Event

View Traffic
Events

Search Traffic
Events

Merge
Traffic
Events

Edit Traffic Event Lane
 Configuration and Status

See
SpecifyEventLocation
Use Case Diagram.

View Suggested
EORS Permits

Create Traffic
Event

Record Organization
Notification
And Arr ival

Modified for R7.

New for R7.Display Weather
Station Conditions

Associate
Event

Create
Incident
Event

Specify Expected
Duration

Change Lane
Direction

Take Event
Offline

Record Lane
Closure

Operator

Log
Weather Station

Data

«extend» «extends»

«extends»

«include»

«extends»

«extend»

«include»

«include»

«include»

«extends»

«extends»

«include»
«include»

«include»

«extends»

«extend»

«extends»

«extends»

«include»

«include»

«extends»

«include»

«extends»

«include»

«include»
«include»

«include» «include»

«extends»

«extends»

«extend»

«include»

«include»

Figure 8-2. ManageTrafficEvents (Use Case Diagram)

8.2.1 Add Text to Event History (Use Case)

An operator with the proper functional rights may add text to a traffic event's event history.

8.2.2 Associate Event (Use Case)

An operator with the proper functional rights may associate related traffic events.

8.2.3 Change Event Attributes (Use Case)

An operator with the proper functional rights may edit traffic event information after the

event has been created. This includes closing the event, adding text to the event history,

recording lane closures, and recording organization and resource arrivals. The user can also

CHART R7 Detailed Design 8-6 03/02/2011

specify the road surface conditions for a roadway event, including: wet, dry, ice/snow, wet

(chemical), and unspecified.

8.2.4 Change Event Type (Use Case)

An operator with the proper functional rights may change the traffic event type.

8.2.5 Change Lane Direction (Use Case)

The lane configuration editor shall allow the user to change the traffic flow direction for a

particular lane. This includes setting a lane to be multi-directional to indicate alternating

use of a single lane. The editor shall allow the user to use hot keys to set the traffic flow

direction. The ability to use "multi-directional" can be disabled as part of the initialization

of the lane configuration editor.

8.2.6 Close Event (Use Case)

An operator with the proper functional rights may close an event. The system will query

the weather station and sensor data from the nearest weather station with recent data when a

traffic event is closed, if geographic coordinates are specified for the traffic event and there

is a weather station within a configurable cutoff radius from that location, and will add an

entry to the event history log. If the event is in the priority event list and the priority event

list is in automatic mode, the system will remove the event from the priority event list when

the event is closed. The system will prevent the user from closing an event if a source has

not been entered for the event or if the event is an incident or planned closure and the user

has not specified a lat/long for the event. The system will remind the user to fill in the

queue length field and vehicles involved (for incidents) prior to closing the event (but will

not prevent them from closing the event if either is not filled in, for a zero queue length and

no vehicles involved are sometimes valid).

8.2.7 Copy Traffic Event (Use Case)

The user with the correct functional rights will be able to create a copy of an existing traffic

event.

8.2.8 Create Incident Event (Use Case)

An operator with the proper functional rights may create a new incident event.

8.2.9 Create Traffic Event (Use Case)

The user with the correct functional rights may add a new traffic event. When creating a

traffic event, the system will show the user a list of existing traffic events that may be

duplicates of the new event being created based on the user's selections for the new event's

location. External and pending events do not appear as possible duplicate events.

CHART R7 Detailed Design 8-7 03/02/2011

8.2.10 Display Weather Station Conditions (Use Case)

When viewing a traffic event, the system will display the weather station data that was

captured at the time when the system preselected the road condition (i.e., when the event

was opened). The station-level data will include the name of the weather system, a

description of the location of the station, the distance from the traffic event to the station,

the road surface condition that was selected for the traffic event, wind speed, wind

direction, visibility, air temperature, precipitation type, precipitation intensity, and time that

the weather data was obtained. It will also display per-sensor data including: a description

of the location of the sensor, the road surface temperature, and the road surface condition.

The user will also be able to bring up the details page for the weather station within the

SCAN Web user interface.

8.2.11 Edit Traffic Event Lane Configuration and Status (Use Case)

An operator with the manage traffic events user right may edit the lane status of a traffic

event, including changing direction for a particular lane. This only applies to open Planned

Roadway Closures, Incidents, and Special Events.

8.2.12 Export Priority Event List (Use Case)

A user viewing the priority event list can export the displayed data as a text file. This

feature allows the user to easily include information about the priority events in reports.

8.2.13 Get Event History Text (Use Case)

An operator with the correct functional rights may view the text entries that have been

added to an event.

8.2.14 Log Weather Station Data (Use Case)

The system will log the weather station data at the opening and closing of a traffic event.

The station-level data will include the name of the weather system, a description of the

location of the station, the distance from the traffic event to the station, the road surface

condition that was selected for the traffic event, wind speed, wind direction, visibility, air

temperature, precipitation type, precipitation intensity, and time that the weather data was

obtained. It will also display per-sensor data including: a description of the location of the

sensor, the road surface temperature, and the road surface condition.

8.2.15 Merge Traffic Events (Use Case)

This use case represents the merge traffic event operation. A user with manage traffic event

right merges the data of two traffic events. See MergeTraffic Events use case diagram.

CHART R7 Detailed Design 8-8 03/02/2011

8.2.16 Modify Traffic Event (Use Case)

An operator with the proper functional rights may edit traffic event information after the

event has been created. This includes responding to the event, editing lane status, editing

location, associating with another event, and specifying other event attributes such as road

condition.

8.2.17 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password

combination and granted roles for system access.

8.2.18 Preselect Road Surface Condition (Use Case)

The system will query and pre-select the road surface condition indicated by the nearest

weather station with recent data when a traffic event is opened, if geographic coordinates

are specified for the traffic event and there is a weather station within a configurable radius

from that location. The system will record the selected station and sensor data in the event

history log.

8.2.19 Query Nearby Weather Station Data (Use Case)

The system will query the nearest weather station with recent data, if geographic

coordinates are specified for the traffic event and there is a weather station within a

specified radius from that location. The system will calculate distance as the crow flies.

The system will, if possible, use the worst road surface condition from sensors matching the

primary route and direction of the traffic event. If no sensors are found matching the traffic

event's route and direction, the worst road surface condition from sensors matching the

traffic event's route will be used. If no sensors match the traffic event's primary route, the

system will use the worst road surface condition reported by any of the station's sensors.

The system will only make a road surface condition selection if the selected weather station

has roadway sensors with data.

8.2.20 Record Lane Closure (Use Case)

The lane configuration editor shall allow the user to specify the status of each lane in the

configuration as being open, closed, or unknown. A feature shall also exist to allow the

user to set all lanes to open without having to set the status individually for each lane. Hot

keys for setting lane status will be supported. The system will record the date/time a lane is

opened or closed. When the lane configuration is initialized to include (not disable) the

feature that sets the initial lane status in the main direction to unknown, then When a user

makes the first change to the status of a lane in the main direction whose status was initially

defaulted to "unknown", the system will set the status of all other lanes in the main

direction that have a status of "unknown" to "open".

CHART R7 Detailed Design 8-9 03/02/2011

8.2.21 Record Organization Notification And Arrival (Use Case)

An operator with the proper functional rights may record the participation of various

organizations in the event resolution.

8.2.22 Record Resource Notification And Arrival (Use Case)

An operator with the proper functional rights may record the participation of various

resources in the event resolution.

8.2.23 Respond to Traffic Event (Use Case)

The system allows an operator to control devices in response to an event through the use of

a response plan. The user may add devices to the plan, select the desired state of the

devices, then activate the plan. Any of the devices used by the event response plan may be

deactivated while the event is open by removing the item for that device from the plan.

When the event is closed, if the response plan is active, it will be deactivated automatically.

8.2.24 Search EORS Permits (Use Case)

The system will allow the user to perform a text search on the following fields of an EORS

permit: permit tracking number, start county name, end county name, permit type, route

location, route type, route number, work order description, permittee name, contract

number and days of week. The system will score each matching permit based on the

percentage of the user entered search terms were found in these fields and will present the

results in order of relevance. The user will be shown a summary of each matching permit

and will be able to show/hide additional details about each permit.

8.2.25 Search Traffic Events (Use Case)

An operator with the proper functional rights may search the CHART system for traffic

events.

8.2.26 Set EORS Permit for Planned Roadway Closure Event (Use Case)

A user may set the EORS permit associated with a planned roadway closure event. Doing

so will set the EORS permit tracking number into the planned roadway closure event

details. The system will assist the user in finding the correct EORS permit by suggesting

potential matching permits as the user types a permit tracking number. In the event that the

user does not see the permit they are looking for in the list of suggested permits, the system

will provide a more advanced searching capability that will search on other fields of the

permit (in addition to the tracking number). The user will be able to specify if the list of

permits considered for suggestion or searching should be limited to only the active and

queued permits, or if all permits currently available in the EORS system should be

considered.

The user will be able to indicate if permit tracking numbers should be considered to match

CHART R7 Detailed Design 8-10 03/02/2011

their search terms if the permit number starts with the user entered text (only) or contains

the user entered text anywhere within the permit number. Additionally the user may

indicate that the permit may start with or end with (last 4 digits) the user entered text.

8.2.27 Specify Event Location (Use Case)

The event location choices will be populated using data from the CHART Mapping

application database.

By default, MD will be selected as the state.

If the selected state is MD, the user will be required to select a predefined MD

county/region. If a route is specified, the user will first select a route type from a pick list

("I", "US", or "MD") and the route type will be used to populate the list of predefined

routes. To specify a route, the user will be required to select one of the predefined routes if

the state is MD. If the state is not MD, the user will be able to enter a county name / region

name and route number as freeform text.

If a route number is specified, the user will be able to select intersecting roads by route

number or route name, or specify the state or county milepost. Additionally the user will be

able to specify whether the traffic event is at, prior, or past the intersecting feature ("at" will

be selected by default).

If the state is MD, the list of intersecting route numbers and names will be populated for the

user as suggestions; however, the user can still specify freeform text for an intersecting

route number, route name, county milepost, and state milepost even if the state is MD.

8.2.28 Specify Expected Duration (Use Case)

An operator with the proper functional rights may specify the expected duration of an

event.

8.2.29 Specify WebsiteTraffic Alert Settings (Use Case)

An operator with the proper functional rights may specify whether or not the traffic event

warrants a "Traffic Alert" on the public CHART web site, and may optionally provide

specific alert text to be associated with the Alert.

8.2.30 System (Actor)

The System actor represents any software component of the CHART system. It is used to

model uses of the system which are either initiated by the system on an interval basis, or are

an indirect by-product of another use case that another actor has initiated.

8.2.31 Take Event Offline (Use Case)

The system periodically checks for closed events and takes them offline provided that a

CHART R7 Detailed Design 8-11 03/02/2011

configured interval of time has elapsed since the event was closed.

8.2.32 View Lane Configuration and Status Textually (Use Case)

The system shall provide a read-only textual description of the specified lane configuration

and status.

8.2.33 View Potential Duplicate Events (Use Case)

An operator with the correct functional rights will be presented with a list of potential

duplicate traffic events based on the event location. The operator will have the option to

then merge these events.

8.2.34 View Priority Event List (Use Case)

Users may view a list of priority events, as defined automatically by the system or as

defined manually by a user. When in automatic mode, the system selects the events to

appear in the priority events list based on attributes of the events, such as the incident type

(Fatality), the HazMat flag, the types of vehicles involved, lane closures, and queue length.

When in manual mode, a user selects the events to appear in the list and the order in which

they appear. The mode is controlled via the system profile. The display is a text only

display and can be accessed without having to log into the CHART system. A link within

the CHART system provides access to it, however users may also access it directly via its

specific URL.

8.2.35 View Suggested EORS Permits (Use Case)

As the user types in the search field the system will present a set of suggested permits based

on the permit tracking number. The suggested permits will each display the tracking

number and some summary information about the permit as well as a link/button that

allows the user to associate the permit to the planned closure directly from the suggestion.

8.2.36 View Traffic Events (Use Case)

An operator with the correct functional rights may view a traffic event. The details for a

traffic event will include the weather station conditions, if the road surface condition was

pre-selected by the system. While viewing the details page of a roadway event with a

defined geographic location, an operator may invoke the Intranet Map to view weather

stations near the traffic event.

CHART R7 Detailed Design 9-12 03/02/2011

9 Detailed Design – SCAN Weather Integrations

9.1 Human-Machine Interface

Weather Integration

Traffic Event Details Page

When a Traffic Event is created where an operator can select Roadway Conditions (currently

Incidents and Weather Events) the Roadway Conditions section of the Traffic Event Details page

will now be automatically populated.

To populate the Road Surface Condition field, the system will select data from the nearest

weather station if three criteria are met: 1) the weather station must be within a given radius of

the event and 2) its data must be no older than a given age and 3) the weather station must have

at least one roadway sensor. Both the radius and maximum data age will be configurable via

System Profile settings.

If a weather station is identified that meets these criteria, the Road Surface Condition field is

assigned by matching the traffic event’s roadway and direction to the roadway and direction of

the weather station’s roadway sensors. This matching is accomplished according to the

following algorithm:

1) Select all roadway sensors whose roadway and direction match the traffic event

2) If none, select all roadway sensors whose roadway matches the traffic event

3) If none, select all roadway sensors

Once the (possibly empty) set of sensors is collected, the traffic event’s Road Surface Condition

is assigned the worst surface condition in the set according to this list of increasingly worse

conditions:

1) UNSPECIFIED

2) DRY

3) WET

4) CHEMICALLY WET

5) ICE OR SNOW

If an automatic selection is made, other relevant weather conditions from the weather station will

also be displayed. The information shown represents a snapshot of the weather data from the

time when the automatic selection was made.

CHART R7 Detailed Design 9-13 03/02/2011

Figure 9-1 Roadway Conditions Section in Traffic Event

The user can override the automatically-selected Road Surface Condition by making another

selection; however, the Nearby Wx Station information will still be displayed.

(Normally the automatic selection will appear as soon as the traffic event is created, but if the

call to get the weather information takes longer than a configurable about of time, this

information may be filled in after event creation, in which case it would appear on the next page

refresh. The amount of time will be configurable via a System Profile setting. This mechanism

will prevent excessive delays while creating Incidents or Weather Service Events if there is a

problem getting the data.)

If the system is able to set the Road Surface Condition according to the criteria described above,

then it will record this in the traffic event history log. Similarly when a traffic event that

supports Roadway Conditions is closed, a separate Roadway Conditions history log entry will be

made. Because the same algorithm is applied at event closure, it is possible a different roadway

sensor may be used than at event creation (e.g. if the traffic event location or weather system

configuration has changed in the interim).

The Intranet Map link will allow the user to bring up the Intranet Map page to see nearby

weather stations in a popup window, if the traffic event has coordinates defined and the Intranet

Map is available.

The SCAN details link will allow the user to bring up the SCAN Web application to see details

for the weather station in a popup window, if data from a weather station was selected and the

SCAN Web application is available.

The show / hide sensors link will allow the user to show or hide details for the roadway sensors.

The actual implementation will display “show” when the roadway sensor details are hidden and

“hide” when they are shown. The details will be hidden initially, to avoid clutter and to avoid

using vertical space on the page. When the sensor information is displayed, it will show the

location description, route and direction, surface condition, and surface temperature for each

sensor:

CHART R7 Detailed Design 9-14 03/02/2011

Figure 9-2 Detailed Roadway Conditions

CHART R7 Detailed Design 9-15 03/02/2011

9.2 System Interfaces

9.2.1 Class Diagrams

9.2.1.1 TrafficEventManagement2 (Class Diagram)

This diagram shows more interface classes related to traffic events.

EVENT_INITIATOR_SCHEDULE_USEREVENT_INITATOR_USER

New for R7:
Added m _roadCondi tions WeatherIn foJ SON

IncidentType

«ty pe»

WeatherConditions

«ty pedef»

TrafficEventTypeValues

«interfac e»

RoadCondition

«enumeration»

TrafficEventAssociatedInfo

«ty pedef»

TrafficEventCreationResult

«ty pedef»

ResponsePartic ipationAddedInfo

«ty pedef»

IncidentTypeValues

«interfac e»

LogEntriesAdded

«ty pedef»

1

EventInitiatorType

«enumeration»

WeatherServiceEventData

1

1

1

AbsoluteOrRelativeTime

«union»
Union bas ed on is Abs olute.
If true, has abs oluteRem inderTim e
If fa ls e, has re la tiv eRem inderTim eSec s

TrafficEventState

«enumeration»

1

1

1

EVENT_INITIATOR_SCHEDULE_USER

1

1

EventInitatorUserData

«s truc t»

1

1

1

1

EVENT_INITATOR_USER

1

LaneConfigurationChangedInfo

«ty pedef»

ResponsePartic ipationChangedInfo

«ty pedef»

CountyState

«enumeration»

1

ResponsePartic ipant

«ty pedef»

EventInitatorScheduleUserData

«s truc t»

ResponsePlanItemInfo

«ty pedef»

PlannedRoadwayClosureEventData

ResponsePartic ipationData

RevokeExecutionFailure

«ex c eption»

TrafficEventTypeChangedInfo

«ty pedef»

IncidentData

1

ResponsePartic ipationRemovedInfo

«ty pedef»

EventInitiator

«union»

BasicEventData

«v aluety pe»

1

1

UnknownEventType

«ex c eption»

TrafficEventEventType

«enumeration»

1

1

ActionEventData

1 1

DisabledVehicleData

1

1

1

1

ResponsePlanItemsRemovedInfo

«ty pedef»

TrafficEventAssociationRemovedInfo

«ty pedef»

1

1

1

ResourceDeploymentData

1

1

IncidentVehicleData

«ty pedef»

1

Organiz ationPartic ipationData

TrafficEventType

«ty pe»

TrafficEventAddedInfo

«ty pedef»

EVENT_PENDING
EVENT_OPEN
EVENT_CLOSED

dis c rim inator Tim eSpec i fic ationTy pe
Tim es tam p2 abs Tim e i f TIM E_ABSOLUTE
long re lTim eSec s re lTim eSec s i f TIM E_RELATIVE

OTHER_NO_ADDL_INFO
OTHER_ADDL_INFO
VEHICLE_FIRE
WEATHER
DEBRIS_IN_ROADWAY
PERSONAL_INJ URY
PROPERTY_DAM AGE
FATALITY
DISABLED_IN_ROADWAY
ROADWORK
COLLISION
M AINTENANCE
SIGNAL_CALL
POLICE_ACTIVITY
OFF_ROAD_ACTIVITY
DECLARATION_OF_EM ERGENCY

getID():Identi fier

-m _id : Identi fier
+m _nam e : s tring
+m _publ ic Nam e : s tring
+m _loc ation : Objec tLoc ation
+m _s ourc e : Sourc e
+m _ev entIn i tia tor : Ev entIn i ta tor
+m _ev entTy pe : Traffic Ev entTy pe
+m _ev entState : Traffic Ev entState
+m _is Fals eAlarm : boolean
+m _is Sc eneCleared : boolean
+m _s c eneClearedTim e : Tim es tam p
+m _is Delay Cleared : boolean
+m _delay ClearedTim e : Tim es tam p
+m _is Confi rm ed : boolean
+m _c onfi rm edTim e : Tim es tam p
+m _openedOrCreatedTim e : Tim es tam p
+m _c los edTim e : Tim es tam p
+m _ev entSti l lOpenRem inderTim e :
 Abs oluteOrRelativ eTim e
+m _openedTim e : Tim es tam p
+m _m ax QueueLength : long
+m _c ontro l l ingOpCenter : OpCenterIn fo
+m _owningOrg : Identi fier
+m _prim ary : boolean
+m _dis p lay WebSi teTraffic Alert : boolean
+m _webSi teTraffic AlertTex t : s tring
+m _netConnec tionSi te : s tring
+m _priori ty L is tOrder:long
+m _es tTim eToClearM ins :long
+m _opCenterPOC:s tring
+m _onSc enePOC:s tring
+m _c om m ents :s tring

long num Cars Inv olv ed
long num Cars Ov erturned
long num Pic k upVanSuv s Inv olv ed
long num Pic k upVanSuv s Ov erturned
long num SingleUni tTruc k s Inv olv ed
long num SingleUni tTruc k s Ov erturned
long num SingleUni tTruc k s Los tLoad
long num Trac torTra i lers Inv olv ed
long num Trac torTra i lers Ov erturned
long num Trac torTra i lers Los tLoad
long num Trac torTra i lers J ac k Kni fed
long num M otorc y c les Inv olv ed
long num LoadedCom m erc ia lBus Inv olv ed
long num LoadedCom m erc ia lBus Ov erturned
long num UnloadedCom m erc ia lBus Inv olv ed
long num UnloadedCom m erc ia lBus Ov erturned
long num LoadedSc hoolBus Inv olv ed
long num LoadedSc hoolBus Ov erturned
long num UnloadedSc hoolBus Inv olv ed
long num UnloadedSc hoolBus Ov erturned

EVENT_INITIATOR_USER
EVENT_INITIATOR_SCHEDULE_USER

Inc identTy pe m _inc identTy pe
Inc identTy pe m _publ ic Inc identTy pe
RoadCondi tion m _roadCondi tions
s tring m _roadCondi tions WeatherIn foJ SON
Inc identVehic leData m _v ehic leData
boolean m _haz m at

d is c rim inator: Ev entIn i tia torTy pe
us erIn i tia tor: Ev entIn i tia torUs erData
s c heduleIUs ern i tia tor : Ev entIn i tia torSc heduleUs erData

His tory LogEntries Added
His tory LogEntries Updated
LaneConfigurationChanged
Organiz ationPartic ipationAdded
Organiz ationPartic ipationChanged
Partic ipationRem ov ed
Res ourc eDeploy m entAdded
Res ourc eDeploy m entChanged
Res pons ePlanItem Added
Res pons ePlanItem M odi fied
Res pons ePlanItem Rem ov ed
Res pons ePlanStatus Changed
Traffic Ev entAdded
Traffic Ev entAs s oc iated
Traffic Ev entAs s oc iationRem ov ed
Traffic Ev entClos ed
Traffic Ev entDeleted
Traffic Ev entStateChanged

m _nam e : s tring
m _opCtrId : Identi fier

ROAD_CONDITION_UNSPECIFIED
DRY
WET
ICE_OR_SNOW
CHEM ICAL_WET

boolean m _s ignal
boolean m _debris
boolean m _uti l i ty
boolean m _other
s tring m _otherDes c rip tion

Identi fier tra ffic Ev entAID
Identi fier tra ffic Ev entBID

m _s c heduleId : Identi fier
m _us erIn i tia tor : Ev entIn i tia torUs erData

Identi fier m _partic ipationID
Res pons ePartic ipant m _partic ipant
boolean m _noti fied
Tim eStam p m _tim eNoti fied

s tring m _v ehic leTagInfo
s tring m _v ehic leM ak eColor
boolean m _ti reChange
boolean m _hotShot
boolean m _water
boolean m _gas
boolean m _di rec tions
boolean m _ownDis pos i tion
boolean m _c al lForServ ic e
boolean m _goneOnArriv a l
boolean m _abandonedVehic le
boolean m _re lay Operator
boolean m _other
s tring m _otherDes c rip tion

Identi fier tra ffic Ev entID
LogEntry [] logEntries

Identi fier tra ffic Ev entID
Identi fier p lanItem ID
s tring p lanItem Nam e
Res pons ePlanItem p lanItem
Res pons ePlanItem Data p lanItem Data

boolean m _arriv ed
Tim eStam p m _tim eArriv ed
boolean m _departed
Tim eStam p m _tim eDeparted

RoadCondi tion m _roadCondi tion
s tring m _roadCondi tions WeatherIn foJ SON
WeatherCondi tions m _weatherCondi tions
boolean m _ev ac uationRequi red
boolean m _c leanupRequi red

s tring m _nam e
Res pons ePartic ipantTy pe m _ty pe

Identi fier ev entID
LaneConfiguration newConfiguration

Traffic Ev entTy pe ev entTy pe
Traffic Ev ent theTraffic Ev ent
Bas ic Ev entData tra ffic Ev entData
Res pons ePartic ipationData[] partic ipantData
Res pons ePlanItem Data[] rp iData
LogEntry L is t logEntries

boolean m _res ponded
Tim eStam p m _tim eRes ponded

Identi fier tra ffic Ev entID
Repons ePartic ipationData partic ipationData
Res pons ePartic ipation partic ipation

s tring m _eors Perm i tTrac k ingNum ber

boolean hurric ane
boolean tornado
boolean s now
boolean s ev ereWind
boolean ra in
boolean reduc edVis ib i l i ty
boolean oz one
boolean h ighWater
boolean flood
boolean lands l ide
boolean other
s tring o therDes c rip tion

Identi fier tra ffic Ev entID
Identi fier[] p lanItem IDs

Identi fier ev entID
Traffic Ev ent newTraffic Ev ent
Bas ic Ev entData newEv entData

Identi fier tra ffic Ev entID
Identi fier partic ipationID

TYPE_PLANNED_ROADWAY_CLOSURE
TYPE_INCIDENT
TYPE_DISABLED_VEHICLE
TYPE_WEATHER_SENSOR_ALERT
TYPE_WEATHER_SERVICE_ALERT
TYPE_ACTION
TYPE_CONGESTION
TYPE_RECURRING_CONGESTION
TYPE_SAFETY
TYPE_SPECIAL_EVENT

Identi fier tra ffic Ev entID
Res pons ePartic ipationData partic ipationData

Identi fier prim ary Ev entID
Traffic Ev ent prim ary Ev ent
Identi fier s ec ondary Ev entID
Traffic Ev ent s ec ondary Ev ent

Traffic Ev ent theTraffic Ev ent
Bas ic Ev entData tra ffic Ev entData
LogEntry L is t fa i ledIn i tia lLogEntries
s tring c reationWarningM es s age

s tring reas on
s tring debug
Identi fierL is t targetIDs

Figure 9-3. TrafficEventManagement2 (Class Diagram)

CHART R7 Detailed Design 9-16 03/02/2011

9.2.1.1.1 AbsoluteOrRelativeTime (Class)

This union stores a time, in either absolute or relative terms.

9.2.1.1.2 ActionEventData (Class)

This class represents all data specific to an Action event type traffic event.

9.2.1.1.3 BasicEventData (Class)

This class represents the data common to all traffic events. All derived data types will

inherit all data shown in this class.

9.2.1.1.4 CountyState (Class)

This enumeration defines the various counties in Maryland and the states surrounding

Maryland that will be used for defining the traffic event.

9.2.1.1.5 DisabledVehicleData (Class)

This class represents all data specific to a disabled vehicle traffic event.

9.2.1.1.6 EventInitatorScheduleUserData (Class)

This structure contains data about a schedule involved in the initiation of a traffic event. It

is contained within the EventInitiator union.

9.2.1.1.7 EventInitatorUserData (Class)

This structure contains data about a user involved in the initiation of a traffic event. It is

contained within the EventInitator union.

9.2.1.1.8 EventInitiator (Class)

This union contains information about the entity or entities involved in the initiation of a

traffic event. This can be the schedule, if a schedule was involved in initating the event,

and/or a user, if a user was involved in initating the event. This union allows for possible

expansion in future releases, where traffic events may be initiated by a schedule without

user confirmation, or by CHART devices (traffic sensors, weather sensors, etc.) or external

interfaces (RITIS, etc.) initially with, or possibly later without, user involvement.

9.2.1.1.9 EventInitiatorType (Class)

This enumeration identifies the types of initiators which can initiate traffic events. Traffic

events can be initiated by a user (directly), or by a schedule (with user involvement). This

enumeration, and the union in which it is a discriminator, allows for possible expansion in

future releases, where traffic events may be initiated by a schedule without user

CHART R7 Detailed Design 9-17 03/02/2011

confirmation, or by CHART devices (traffic sensors, weather sensors, etc.) or external

interfaces (RITIS, etc.) initially with, or possibly later without, user involvement.

9.2.1.1.10 IncidentData (Class)

This class represents data specific to an Incident type traffic event.

9.2.1.1.11 IncidentType (Class)

This typedef defines the type of the incident.

9.2.1.1.12 IncidentTypeValues (Class)

This interface lists all possible incident types.

9.2.1.1.13 IncidentVehicleData (Class)

This class represents the vehicles involved data for incidents. Its purpose is to simplify the

exchange of data between GUI and server.

9.2.1.1.14 LaneConfigurationChangedInfo (Class)

This structure contains the data that is broadcast when the lane configuration of a traffic

event is changed.

9.2.1.1.15 LogEntriesAdded (Class)

This structure contains the data that is broadcast when new entries are added to the event

history log of a traffic event.

9.2.1.1.16 OrganizationParticipationData (Class)

This class represents the data required to describe an organization's participation in the

response to a traffic event.

9.2.1.1.17 PlannedRoadwayClosureEventData (Class)

This class contains data specific to the PlannedRoadwayEvent type of traffic event.

9.2.1.1.18 ResourceDeploymentData (Class)

This class represents the data required to describe a resource's participation in the response

to a traffic event.

9.2.1.1.19 ResponseParticipant (Class)

The ResponseParticipant class is a non-behavioral structure which specifies a participant in

a response.

CHART R7 Detailed Design 9-18 03/02/2011

9.2.1.1.20 ResponseParticipationAddedInfo (Class)

This structure contains the data that is broadcast when a response participant is added to the

response to a particular traffic event.

9.2.1.1.21 ResponseParticipationChangedInfo (Class)

This structure contains the data pushed in a CORBA event any time any type of response

participation object changes state.

9.2.1.1.22 ResponseParticipationData (Class)

This class contains all data pertinent to any class that represents a response participation.

9.2.1.1.23 ResponseParticipationRemovedInfo (Class)

This structure contains the data that is broadcast when one or more response plan items are

removed from a traffic event.

9.2.1.1.24 ResponsePlanItemInfo (Class)

This structure contains the data that is broadcast any time a new response plan item is added

or an existing response plan item is modified.

9.2.1.1.25 ResponsePlanItemsRemovedInfo (Class)

This structure contains the data that is broadcast when one or more response plan items are

removed from a traffic event.

9.2.1.1.26 RevokeExecutionFailure (Class)

This class defines a exception thrown when failed to revoke a response plan item's

execution.

9.2.1.1.27 RoadCondition (Class)

This enumeration lists the possible roadway conditions at the scene of a traffic event.

9.2.1.1.28 TrafficEventAddedInfo (Class)

This structure contains the data that is broadcast when a new traffic event is added to the

system.

9.2.1.1.29 TrafficEventAssociatedInfo (Class)

This structure contains the data that is broadcast when two traffic events are associated.

CHART R7 Detailed Design 9-19 03/02/2011

9.2.1.1.30 TrafficEventAssociationRemovedInfo (Class)

This structure contains the data that is broadcast when the association between two traffic

events is removed.

9.2.1.1.31 TrafficEventCreationResult (Class)

This result is returned from createEvent() to indicate warning messages if the event was not

created cleanly.

9.2.1.1.32 TrafficEventEventType (Class)

his enumeration defines the types of CORBA events that can be broadcast on a Traffic

Event related CORBA Event channel.

9.2.1.1.33 TrafficEventState (Class)

This enumeration lists the possible states for a traffic event. The states are pending, open,

and closed. A false alarmed "state" is considered a special case of "closed", so false

alarmed events will have a TrafficEventState of EVENT_STATE_CLOSED. They will

also have the m_isFalseAlarm flag in their BasicEventData set to true to distinguish them

from normally closed events.

9.2.1.1.34 TrafficEventType (Class)

This typedef defines the type of traffic event.

9.2.1.1.35 TrafficEventTypeChangedInfo (Class)

This structure contains the data that is broadcast when a traffic event changes types. The

traffic event object that represented the traffic event previously is removed from the system

and is replaced by the newTrafficEvent reference contained in this structure. If the

consumer of this CORBA event has stored any references to the traffic event previously,

those references should be replaced with this new reference.

9.2.1.1.36 TrafficEventTypeValues (Class)

This interface defines the types of traffic events that are supported by the system.

9.2.1.1.37 UnknownEventType (Class)

This class defines a exception thrown when the type of a traffic event type is not known and

is not defined in TrafficEventTypeValues.

9.2.1.1.38 WeatherConditions (Class)

This structure contains all possible weather conditions. Each member should be set to true

if that condition applies, false otherwise. The m_otherDescription member will only be

considered valid if the m_other member is set to true.

CHART R7 Detailed Design 9-20 03/02/2011

9.2.1.1.39 WeatherServiceEventData (Class)

This class contains data specific to the WeatherServiceEvent type of traffic event.

CHART R7 Detailed Design 9-21 03/02/2011

9.3 Traffic Event Module Package

9.3.1 Class Diagrams

9.3.1.1 TrafficEventModuleClassesR7 (Class Diagram)

This diagram show Traffic Event Module classes related to the changes in Release 7.

IncidentImplR7

TrafficEventDBR7

WeatherServiceEventImplR7

TrafficEventImpl

*

1

1

1

SynchAsynchQueryUtil.
Executer<T>

«interface»

RoadSurfaceConditionWeatherInfoQuery

SynchAsynchQueryUtil.
AsynchHandler<T>

«interface»

TrafficEventModulePropertiesR7

RoadSurfaceConditionWeatherInfo

TrafficEventGroupR7

TrafficEventFactoryImplR7

prepareEventDataForCreation(token : byte[],
 evInitiator : EventInitiator, type : short,
 eventData : BasicEventData,
 createAsPending : boolean,
 createAsExternal : boolean,
 markAsInteresting : boolean) : void
queryRoadSurfaceConditionWeatherInfoIfApplicable(
 token : byte[],
 eventGroup : TrafficEventGroup,
 waitForQuery : boolean) : void
getWeatherService() : JAXBWebServiceClient

m_weatherService : JAXBWebServiceClient
m_weatherServiceCmdQueue : CommandQueue

queryRoadSurfaceConditionWeatherInfo(
 token : byte[],
 radiusMiles : double,
 lookbackMins : int,
 service:JAXBWebServiceClient,
 relativeURL : String,
 cmdQueue : CommandQueue,
 synchWaitTimeMillis : long) : void
handleRoadSurfaceConditionWeatherInfo(
 token : byte[],
 roadSurfaceConditionWeatherInfo : RoadSurfaceConditionWeatherInfo,
 pushEvent : boolean) : void

m_handleRoadSurfaceConditionWeatherInfoAsynch : boolean

handleRoadSurfaceConditionWeatherInfo(
 token : byte[],
 roadSurfaceConditionWeatherInfo : RoadSurfaceConditionWeatherInfo,
 pushEvent : boolean) : void

roadSurfaceCondition : RoadSurfaceCondition
weatherInfoJSON : String
formattedLogMessage : String

getWeatherServiceBaseURL() : String
getWeatherServiceWeatherDataRequestRelativeURL() : String
getWeatherServiceNumQueryThreads() : int
getWeatherServiceHTTPConnectTimeoutMillis() : int
getWeatherServiceHTTPReadTimeoutMillis() : int

executeQuery() : T
handleAsynchQueryResults(results : T) : void
handleAsynchException(ex : Exception) : void

RoadSurfaceConditionWeatherInfoQuery(
 token : byte[],
 geoLoc:GeoLocation,
 route:RouteInfo,
 direction : short,
 radiusMiles : double,
 lookbackMins : int,
 service : JAXBWebServiceClient,
 relativeURL : String,
 eventGroup : TrafficEventGroup)
executeQuery() : RoadSurfaceConditionWeatherInfo
-sendWeatherDataRequest(geoLoc : GeoLocation,
 route : RouteInfo, radiusMiles : double, lookbackMins : int) :
 CHART2.xsd.weatherservice.WeatherDataResponse

m_token : byte[]
m_service : JAXBWebServiceClient
m_relativeURL : String
m_eventGroup : TrafficEventGroup
m_geoLoc : GeoLocation
m_route : RouteInfo
m_direction : short
m_radiusMiles : double
m_lookbackMinutes : int

handleRoadSurfaceConditionWeatherInfo(
 token : byte[],
 roadSurfaceConditionWeatherInfo : RoadSurfaceConditionWeatherInfo,
 pushEvent : boolean) : void

setWeatherInfoJSON(id : Identifier, weatherInfoJSON : String) : void
getWeatherInfoJSON(conn : Connection, eventID : Identifier) : String

Figure 9-4. TrafficEventModuleClassesR7 (Class Diagram)

9.3.1.1.1 IncidentImplR7 (Class)

This class contains IncidentImpl changes for R7. This class is the CORBA object

CHART R7 Detailed Design 9-22 03/02/2011

implementation for an Incident event.

9.3.1.1.2 RoadSurfaceConditionWeatherInfo (Class)

This class or structure is used as the internal representation (within the Traffic Event

Module) of the results of querying the road surface condition weather info from the

Weather Service. It contains all of the data needed by the traffic event module classes.

9.3.1.1.3 RoadSurfaceConditionWeatherInfoQuery (Class)

This class executes and handles the results of the query to the Weather web service.

9.3.1.1.4 SynchAsynchQueryUtil. AsynchHandler<T> (Class)

This interface allows an object to handle the data returned from a query asynchronously

(i.e., not on the calling thread).

9.3.1.1.5 SynchAsynchQueryUtil. Executer<T> (Class)

This interface is implemented by an object that can execute a query. The type of data

returned from the query is specified as a generic type. Any data needed for the query must

be stored in the implementing object.

9.3.1.1.6 TrafficEventDBR7 (Class)

This class contains TrafficEventDB changes for R7. This class provides database

functionality related to traffic events.

9.3.1.1.7 TrafficEventFactoryImplR7 (Class)

This class shows changes in the TrafficEventFactoryImpl class for R7. This class manages

all traffic events served by the Traffic Event Service.

9.3.1.1.8 TrafficEventGroupR7 (Class)

This class shows changes in the TrafficEventGroup class for R7. This class manages a

single TrafficEvent CORBA object implementation.

9.3.1.1.9 TrafficEventImpl (Class)

This class provides an implementation of the TrafficEvent interface. It contains state

variables and processing that common to all traffic events.

9.3.1.1.10 TrafficEventModulePropertiesR7 (Class)

This class contains TrafficEventModuleProperties changes for R7. This class provides

access to settings defined in the TrafficEventService properties file.

CHART R7 Detailed Design 9-23 03/02/2011

9.3.1.1.11 WeatherServiceEventImplR7 (Class)

This class shows WeatherServiceEventImpl changes for R7. This class is the CORBA

object implementation for a Weather Service event.

9.3.2 Sequence Diagrams

9.3.2.1 TrafficEventFactoryImpl:createTrafficEventHelper (Sequence Diagram)

This diagram shows how a traffic event is created. First, the BasicEventData that is passed

in is prepared for event creation. This involves setting a number of variables, including the

ID of the new event and several other fields. Next the TrafficEventGroup object is created

and initialized. This creates a TrafficEventImpl object of the appropriate type and activates

the object in CORBA and publishes it in the Trading Service. The TrafficEventGroup is

the added to the database. The lane configuration (if specified) is set. The

TrafficEventGroup is added to the factory's list. The initial event history log entries are

added. For R7, a call to queryRoadSurfaceConditionWeatherInfoIfApplicable() will be

made to query the road surface condition weather information (this is documented in the

sequence diagram of the same name). The response participation and response plan item

objects are also added. Log messages are added to the even history and comm log. The

TrafficEventAdded event is pushed. Finally a TrafficEventCreationResult is returned,

which contains a reference to the event and any warning messages.

CHART R7 Detailed Design 9-24 03/02/2011

[* for each field]
addLogEntry(token, logEntry)

addCommLogEntry(token, "Traffic Event ... created", byte[0], eventData.m_source)

TrafficEventCreationResult

create(eventData, m_db, this)

TrafficEvent
FactoryImpl

This will set the following fields in the BasicEventData:

ID, controlling op center ID/name, event still open remind time,
event initiator, connection site/factory, public name / incident type,
event state, external / interesting flags, opened/created time, closed
time, false alarm flag.

prepareEventDataForCreation(
token, evInitiator, type,

eventData, createAsPending,
createAsExternal, markAsInteresting)

New for R7.
See the queryRoadSurfaceConditionWeatherInfoIfApplicable
sequence diagram.queryRoadSurfaceCondition

WeatherInfoIfApplicable(token, eventGroup, true)

IncidentImpl

LaneConfigurationImpl

TrafficEventModule OperationsLog

createTrafficEventImpl(type)

[type==TYPE_INCIDENT]
create

initialize(this, m_db)

activateAndRegisterTrafficEvent(impl, type)

addGroupToDatabase()

[lane config specified]
create

setLaneConfiguration(token, newLaneConfig)

Add TrafficEventGroup To List

[* for each entry in initialEntries]
addLogEntry(entry)

TrafficEvent
FactoryImpl

createTrafficEventHelper()

[* for each ResponseParticipationData]
addResponseParticipation(token, rpData, false)

[* for each ResponsePlanItemData]
addResponsePlanItem(token, rpiData, false)

addLogEntry(token, "Traffic Event ... created")

logBasicEventDataInitialHistory(token)

pushTrafficEventAddedEvent()

log(token, "Traffic Event ... created", TRAFFIC_EVENT_OPENED_ACTION_TYPE)

TrafficEventGroup

initialize(type, teModule,
dblogger, audioClipOwner)

Figure 9-5. TrafficEventFactoryImpl:createTrafficEventHelper (Sequence Diagram)

CHART R7 Detailed Design 9-25 03/02/2011

9.3.2.2 TrafficEventFactoryImpl:getWeatherService (Sequence Diagram)

This diagram shows how the traffic event factory gets or creates a JAXBWebServiceClient

object for calling the Weather Service. This object will only be created on first use - after

that the existing one will be reused. A JAXBContext object is created, and the base URL

for the web service is read from the properties and used to create an XMLHTTPService

object. The HTTP connect and read timeout values are then set using values specified in

the Traffic Event Service properties file. A JAXBWebServiceClient object is created,

stored in the factory for later use, and returned to the caller.

getWeatherServiceHTTPConnectTimeoutMillis()
setConnectTimeout(connectTimeoutMillis)

getWeatherServiceHTTPReadTimeoutMillis()
setReadTimeout(readTimeoutMillis)

TrafficEv entFactoryImpl

TrafficEventFactoryImpl JAXBContext
TrafficEventModule

Properties

create(xmlHTTPService, jaxbContext)

Store in member variable
for later use

XMLHTTPService

JAXBWebServiceClient

getWeatherService()

newInstance(contextPath)

getWeatherServiceBaseURL()

[already created]
JAXBWebServiceClient

JAXBContext

create(baseURL)

enableXMLLogging(Log.DEBUG)

JAXBWebServiceClient

Figure 9-6. TrafficEventFactoryImpl:getWeatherService (Sequence Diagram)

CHART R7 Detailed Design 9-26 03/02/2011

9.3.2.3 TrafficEventFactoryImpl:queryRoadSurfaceConditionWeatherInfoIfApplicable

(Sequence Diagram)

This diagram shows how the traffic event factory performs a road conditions weather info

query. It returns and does nothing if the traffic event is not an incident or weather service

alert, or if the event is pending or external, or if the traffic event does not have a geographic

location. Otherwise, it gets the search radius, lookback time, and synch wait time from the

System Profile. It gets (or creates) the JAXBWebServiceClient object (as shown on the

getWeatherService sequence diagram). It creates a CommandQueue for handling weather

queries, if one was not previously created. It then calls the TrafficEventGroup to perform

the query (as shown on the queryRoadSurfaceWeatherInfo sequence diagram).

[event is external]

If waitForQuery is false,
we'll use a wait time of 0
instead.

[event not open or closed]

See this sequence diagram for details.

Save CommandQueue for later use

[CommandQueue not already created]
getWeatherServiceNumQueryThreads()

[CommandQueue not already created]
create()

Creates the web service client object, if necessary.
See sequence diagram.

JAXBWebServiceClient

CommandQueue

getWeatherServiceWeatherDataRequestRelativeURL()

getWeatherService()

[waitForQuery]
getRoadConditionsWeatherInfoSynchWaitTimeMillis()

TrafficEventFactoryImpl ServiceApplication

[type not TYPE_INCIDENT and
not TYPE_WEATHER_SERVICE_ALERT]

[no geo location in BasicEventData]

getDiscoveryManager()

getRoadConditionsWeatherInfoRadiusMiles()

TrafficEventGroup

queryRoadSurfaceCondition
WeatherInfoIfApplicable(token, eventGroup,

waitForQuery)

TrafficEventImpl
or

TrafficEventGroup

SystemProfilePropertiesTrafficEventModule DiscoveryManager

getType()

getBasicEventData()

getServiceApp()

geSystemProfileProperties()

getRoadConditionsWeatherInfoLookbackMins()

queryRoadSurfaceWeatherInfo(
token, radiusMiles,

lookbackMins, service,
relativeURL, cmdQueue,

synchWaitTimeMillis)

TrafficEvent
ModuleProperties

Figure 9-7.

TrafficEventFactoryImpl:queryRoadSurfaceConditionWeatherInfoIfApplicable (Sequence

Diagram)

CHART R7 Detailed Design 9-27 03/02/2011

9.3.2.4 TrafficEventGroup:close (Sequence Diagram)

This diagram shows the processing when a traffic event is closed. (NOTE - most of this is

unchanged for R7, except for the weather query). If the event is Pending, an InvalidState

exception is returned. If it is not external a resource check is performed, and if it is

controlled by another operations center and the user does not have override rights, a

ResourceControlConflict exception is returned. Otherwise, the BasicEventData fields are

updated to mark the event as closed, and the values are saved to the database. The

response plan items are revoked, removed, deactivated. CORBA events are pushed to

inform other applications of the RPIs being deactivated and the event being closed. Log

entries are added to the event history, comm log, and operations log. Finally, a call to

query the road surface condition is made (if applicable), passing a "wait" parameter of false

to avoid waiting for the query results on the calling thread, so the closing of the even is not

delayed. The query will be handled on a background thread, and when it completes it will

cause handleRoadSurfaceConditionWeatherInfo to be called (see that sequence diagram for

details).

[* for each response
plan item]

Push Response Plan Items Removed Event

Push Traffic Event Closed Event

addLogEntry(token, "Traffic event c losed");

addCommLogEntry(token, logMsg, nullID, sourceType, SYSTEM)

log(token, logMsg, TRAFFIC_EVENT_CLOSED_ACTION_TYPE)

New for R7.

TrafficEventFactoryImpl

 Inc ludes traffic event s tate,
false alarm, c losed time,
controlling op center.

TrafficEventDB ResponsePlanItemImpl TrafficEventModule OperationsLog

[event is pending]
InvalidState

[not external and
controlled by other op center]

ResourceControlConflic t

[not external]
checkResourceControlConflic t(token)

Set BasicEventData fields

updateBasicEventData(eventID, data, dataChangedHints)

revokeExecution(systemToken, trafficEvent)

removeResponsePlanItem(itemID, eventID, itemData)
getItemData()

Deactivate in POA

cleanup()

queryRoadSurfaceConditionWeatherInfoIfApplicable(token, this , false)

[any error when c los ing event]
throw exception

User

TrafficEventGroup

close(token, falseAlarm)

Figure 9-8. TrafficEventGroup:close (Sequence Diagram)

CHART R7 Detailed Design 9-28 03/02/2011

9.3.2.5 TrafficEventGroup:handleRoadSurfaceConditionWeatherInfo (Sequence

Diagram)

This diagram shows how the results of the road surface condition weather info query are

handled. The TrafficEventGroup will be called, either synchronously or asynchronously, to

handle the results. If asynchronous, the pushEvent parameter will be true. The

TrafficEventGroup will call the IncidentImpl to handle the data. It logs the weather data to

the event history log. If the event is closed, it returns without further action. If the event is

open, it calls the TrafficEventDB to set the road surface condition and weather info in the

database, and then updates the fields in the BasicEventData object. If the pushEvent

parameter was set to true, an event is pushed indicating the changed data. Finally an entry

is added to the operations log before returning.

TrafficEventGroup

handleRoadSurfaceConditionWeatherInfo(
token, info, pushEvent)

IncidentImpl

[type is TYPE_INCIDENT]
handleRoadSurfaceConditionWeatherInfo(

token, info, pushEvent)
addLogEntry(token, info.formattedLogMessage)

[event not open]
[event not open]

TrafficEventGroup
or

RoadSurfaceCondition
WeatherInfoQuery

TrafficEventDB OperationsLog

NOTE - this diagram shows the processing for an Incident,
but one other event type also supports road surface condition:
the Weather Service Event. The logic would be identical,
 so it will not be diagrammed.

[road condition still Unspecified]
setRoadCondition(id, info.roadSurfaceCondition)

setWeatherInfo(id, info.weatherInfoJSON)

[road condition still Unspecified]
Update Road Condition In IncidentData

[pushEvent == true]
pushTrafficEventStateChangedEvent(getBasicEventData,

dataChangedHints)

log(token, logMsg, OperationsLog.TRAFFIC_EVENT_MODIFIED_ACTION_TYPE)
getOpLog()

Update Weather Info In IncidentData

Figure 9-9. TrafficEventGroup:handleRoadSurfaceConditionWeatherInfo (Sequence

Diagram)

9.3.2.6 TrafficEventGroup:queryRoadSurfaceWeatherInfo (Sequence Diagram)

This diagram shows how the query for road surface condition weather info will be made.

The traffic event factory calls the traffic event group to initiate the query. The traffic event

CHART R7 Detailed Design 9-29 03/02/2011

group creates a RoadSurfaceConditionWeatherInfoQuery object which contains all of the

data necessary to perform the query and to handle the results of the query. The query object

is passed to the executeTimeLimitedQuery() method, which causes the query to be executed

on another thread (see the SynchAsynchQueryUtil.executeTimeLimitedQuery sequence

diagram for details). When the query is executed, a JAXB request object is created and

posted to the Weather Service (web service), and a JAXB object is returned. The first

weather station in the returned list for which a Road Condition is specified will be used.

The data is then reduced to the information needed internally by the Traffic Event Service

(i.e., a RoadSurfaceConditionWeatherInfo object). If the query completes before the

specified synchronous wait time, the data is handled on the calling thread, so that the data

will be included in traffic event creation. If the query takes longer than the specified wait

time, the data will be handled asynchronously and will not show up immediately at event

creation time, but will be pushed via a CORBA event. This mechanism allows a best effort

to display the road conditions when the traffic event is first created, while ensuring that

event creation will not be excessively slowed down if there is a problem querying the

Weather Service.

See the SynchAsynchQueryUtil.executeTimeLimitedQuery
sequence diagram for details.

This interprets the
road condition, and
builds the JSON string
containing the weather data
and the log message for the
event history.

The first weather station
from the returned list
for which the Road Condition
is specified will be used.

TrafficEventGroup
SynchAsynchQueryUtil

RoadSurfaceCondition
WeatherInfoQuery

JAXBWebServiceClient

The executeQuery() call actually runs on
another thread, so the result can
come back before or after the synch
wait time.

This logic is invoked if
the result is not returned within
the synchWaitTime. The pushEvent
parameter is set to true, to push
a CORBA event.

create(token, geoLoc, route, direction, radiusMiles, lookbackMins,
webService, relativeURL, eventGroup)

executeTimeLimitedQuery(query, query,
cmdQueue, synchWaitTime)

[result returned before synchWaitTime]
RoadSurfaceConditionWeatherInfo

executeQuery()

Create And Prepare
WeatherDataRequest
JAXB request object

post(relativeURL, req)

CHART2.xsd.weatherservice.
WeatherDataResponse

Convert JAXB response
to RoadSurfaceConditionWeatherInfo

RoadSurfaceConditionWeatherInfo

[result NOT returned before synchWaitTime]
null

[weather info not null]
handleRoadSurfaceWeatherConditionInfo(token, info, false)

[event has no geo location]

[result returned after
synchWaitTime]

handleAsynchQueryResults(info)

handleRoadSurfaceWeatherConditionInfo(token, info, true)

queryRoadSurfaceWeatherInfo(
token, radiusMiles,

lookbackMins,
webService, relativeURL,

cmdQueue, synchWaitTime)

TrafficEventFactoryImpl

Figure 9-10. TrafficEventGroup:queryRoadSurfaceWeatherInfo (Sequence Diagram)

CHART R7 Detailed Design 9-30 03/02/2011

9.4 Utility Package

9.4.1 Class Diagrams

9.4.1.1 UtilityClasses3 (Class Diagram)

This Class Diagram shows various utility classes that are used by GUI and servers.

New for R7.

SynchAsynchQueryUtil<T>

SynchAsynchQueryUtil.
Executer<T>

«interface»
SynchAsynchQueryUtil.

AsynchHandler<T>

«interface»

java.io.FilenameFilter
«interface»

TempFileKeeper
«interface» AgeBasedFilenameFilter

CHART2.Utility.Direction
«enumeration»

$fromIDLValue(dir : int) : CHART2.Utility.Direction
$fromName(name : String) : CHART2.Utility.Direction
$getDirectionIDFromName(name:String) : short
$getDirectionName(idlDir : short) : String
$getIDLValues(arr : CHART2.Utility.Direction[]) : short[]
$getRoadwayDirections(allowComboDirs : boolean,
 allowNone : boolean) : CHART2.Utility.Direction[]
$values(allowNonRoadwayDirs : boolean,
 allowComboDirs : boolean,
 allowNonDirectionalDirs : boolean,
 allowNone : boolean) : CHART2.Utility.Direction[]
addComponentDirsToCollection(
 c : Collection<CHART2.Utility.Direction>
containsDirection(dir : CHART2.Utility.Direction) : boolean
getAbbreviation() : String
getBoundName() : String
getIDLValue() : short
getName() : String
getOpposingDirection() : CHART2.Utility.Direction
isCombo() : boolean
isDirectional() : boolean
isNone() : boolean
isValidRoadwayDir() : boolean

East
EastWest
InnerLoop
InnerOuterLoops
None
North
Northeast
Northwest
OtherAdditionalInfo
OtherNoAdditionalInfo
OuterLoop
South
Southeast
SouthNorth
Southwest
West

$executeTimeLimitedQuery(ex : Executer<T>, handler : AsynchHandler<T>,
 executionCmdQueue : CommandQueue, maxWaitTimeMillis : long) : T

getFilenamesToKeep() : List<String>

executeQuery() : T

AgeBasedFilenameFilter(dir : File, minAgeMinutes : int)
setExcludedFiles(filenames : String[]) : void

handleAsynchQueryResults(results : T) : void
handleAsynchException(ex : Exception) : void

Figure 9-11. UtilityClasses3 (Class Diagram)

CHART R7 Detailed Design 9-31 03/02/2011

9.4.1.1.1 AgeBasedFilenameFilter (Class)

This class allows files that are older than the specified age to be accepted by the filter.

This would typically be used to delete old files. Filenames to keep can be set into the filter,

and these will not be accepted by the filter.

9.4.1.1.2 CHART2.Utility.Direction (Class)

This is an enumeration that mirrors the Common::Direction IDL enumeration, but provides

additional functionality.

9.4.1.1.3 java.io.FilenameFilter (Class)

This interface is used to filter files by name.

9.4.1.1.4 SynchAsynchQueryUtil. AsynchHandler<T> (Class)

This interface allows an object to handle the data returned from a query asynchronously

(i.e., not on the calling thread).

9.4.1.1.5 SynchAsynchQueryUtil. Executer<T> (Class)

This interface is implemented by an object that can execute a query. The type of data

returned from the query is specified as a generic type. Any data needed for the query must

be stored in the implementing object.

9.4.1.1.6 SynchAsynchQueryUtil<T> (Class)

This class performs time-limited synchronous queries, where it waits up to a specified

maximum amount of time (on the calling thread) for the query to complete. If the query

does not complete in that amount of time, the processing is handled asynchronously and the

results are passed to a handler when the query does complete. This uses a parameterized

type to allow generic query functionality.

9.4.1.1.7 TempFileKeeper (Class)

This interface allows a class to "own" temporary files for the purpose of preventing them

from being deleted by periodic cleanup functionailty.

CHART R7 Detailed Design 9-32 03/02/2011

9.4.2 Sequence Diagrams

9.4.2.1 SynchAsynchQueryUtil:executeTimeLimitedQuery (Sequence Diagram)

This diagram shows the processing for a query that is allowed to take up to a limited

amount of time to complete before being handled asynchronously. When

executeTimeLimitedQuery() is called, an Executer and an AsynchHandler object are passed

in, providing the app-level functionality for the query. A command queue is passed for

executing the query, and a maximum wait time is passed. Two lock objects are created: one

for the data, and one for the query timeout. The calling (synchronous) thread enters

synchronized blocks for both of these locks, creates a command and adds it to the

CommandQueue, and then waits for notification that the query has completed, or for the

timeout to expire. The CommandQueue executes the query, and then stores the query result

(or exception) in the command object for later use, notifies the synchronous thread to wake

up, and then enters a synchronized block on the data lock. However, since the synchronous

thread still has the data lock, the asynchronous thread is blocked until the synchronous

thread extracts the query results (or exception) and clears them within the command object.

The synchronous thread returns the results to the caller with the data (or null, if the query

did not complete in time), or throws an exception to the caller. The asynchronous thread is

then allowed to examine the results (or exception) stored in the command object. If they are

not null at this point it is because the result (or exception) was not returned synchronously

to the caller, so the AsynchHandler object is called to handle them.

CHART R7 Detailed Design 9-33 03/02/2011

Figure 9-12. SynchAsynchQueryUtil:executeTimeLimitedQuery (Sequence Diagram)

CHART R7 Detailed Design 9-34 03/02/2011

9.5 Webservices Weather Module Package

9.5.1 Class Diagrams

9.5.1.1 WeatherModuleClasses (Class Diagram)

This diagram describes classes involved in the implementation of the CHART Weather

Module.

RoadConditions
«enumeration» WeatherDataRequest

TestFileUpdateTask

1 1

SurfaceSensorData

*

1

1

1

ExternalID

1

1

1

1

WeatherStationData

WeatherStationWrapper

JAXB generated classes.
CHART2.xsd.weatherService package

WebServiceModuleProperties

*

1

1

1

1

java.util.Timer

java.util.TimerTask

DataRefreshTask

1

1

*

1

1

11

BasicRequestHandler

WeatherDataRequestHandler

WeatherModule

WebServiceModule
«interface»

WeatherModuleProperties

WeatherDataManager

WeatherModuleDB

ctor(module : WeatherDataModule)
processRequest(request:BasicRequest, supporter:WSRequestHandlerSupporter, ctx:Context):String
handleWeatherDataRequest(req : WeatherDataRequest, ctx : Context)
handleValidationException(supporter:WSRequestHandlerSupporter, request:BasicRequest, ctx:Context,
 e:ValidationException):String
handleAuthenticationException(supporter:WSRequestHandlerSupporter, request:BasicRequest, ctx:Context,
 e:AuthenticationException):String
handleProcessingException(supporter:WSRequestHandlerSupporter, request:BasicRequest, ctx:Context,
 e:ProcessingException):String
+getWeatherDataXML(data : WeatherStationData[]) : String
+calculateRoadConditions(sensorData : SensorData[], rteNum : RouteNumber, rteDir : SpecificRoadwayDirection)

+m_module : WeatherModule

+ctor()
+updateWeatherStationData(data : WeatherStationData[])
+getWeatherStationData() : WeatherStationData[]
+initialize(db : WeatherModuleDB)
+shutdown()

-m_timer : Timer
-m_wsTable :
 Hashtable<ExternalID WeatherStatsionDataWrapper>
-m_db : WeatherModuleDB

+run()

-m_dataManager : WeatherDataManager
-m_db : WeatherModuleDB

initalize(service:WebService):void
shutdown():void

+run()

-m_dataManager : WeatherDataManager

+ctor(...)
+getDB() : WeatherModuleDB
+getDataManager() : WeatherDataManager
+initialize()
+shutdown()

-m_props :WeatherModuleProperties
-m_weatherDataMgr : WeatherDataManage
-m_db : WeatherModuleDB
-m_reqHdlr : WeatherDataRequestHandler

+ctor(key : ExternalID, data : WeatherStationData)
+getKey() : ExternalID
+updateData(data : WeatherStationsData)
+cloneData() : WeatherStationData
+distanceFromLocation(GeoLocation) : double
+getLastUpdateTime() : Date

-m_data : WeatherStationData
-m_key : ExternalID
-m_lastUpdateTime : long

UNSPECIFIED
DRY
WET
ICE_OR_SNOW
CHEMICAL_WET

+requireDigitalSignaturesOnRequests() : boolean
+getVelocityTemplatePath() : String
+getXSDPath() : String
+getTestFilePath() : String
+getDBPollingRateMins() :short
+getDataManagerStaleTimeHours() : short

#location : PointLocationProfile
#lookbackMins : Integer
#routeNum : RouteNumber
#routeDir : SpecifiedRoadwayDirection
#radiusMilesTenths : Integer

+getWeatherData() : WeatherStationData[]

-m_chartWebDBConnMdgr :
 DBConnectionManager

#sensorId : String
#sensorDesc : String
#routeNum : RouteNumber
#routeDir : SpecifiedRoadwayDirection
#surfaceTempF :Short
#surfaceConditions : RoadConditions

#id : ExternalID
#location : PointLocationProfile
#locationDesc : String
#distanceMilesTenths : Integer
#airTemp : short
#precipDesc : String
#precipIntensityDesc : String
#windDirAvg : OrdinalDirection
#windSpeedAvgMPh : Short
#visiblityMilesTenths : BigDecimal
#surfaceConditions : RoadConditions
#surfaceSensors : SurfaceSensorData[]
#timesamp : XMLGregCal

Figure 9-13. WeatherModuleClasses (Class Diagram)

9.5.1.1.1 BasicRequestHandler (Class)

This abstract base class provides an implementation of the

WSRequestHandler.processRequest() method that provides optional XML validation

CHART R7 Detailed Design 9-35 03/02/2011

against specified XSD files and optional digital signature verification as well. It is intended

to be used by request handlers that plan to take XML in and return XML to the calling

client.

9.5.1.1.2 DataRefreshTask (Class)

This TimerTask is used to periodically query the database containing weather data and

using it to update the cache in the WeatherDataManager.

9.5.1.1.3 ExternalID (Class)

This object represents and External Object ID made up of 3 parts. A System ID, Agency

ID, Object ID.

9.5.1.1.4 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or

recurring execution.

9.5.1.1.5 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one

or more times.

9.5.1.1.6 RoadConditions (Class)

JAXB generated enum representing the road conditions values recognized in chart.

9.5.1.1.7 SurfaceSensorData (Class)

JAXB generated class (from the WeatherService.xsd) representing the data for a specific

Surface Sensor..

9.5.1.1.8 TestFileUpdateTask (Class)

This Optional TimerTask is used to periodically read a test xml file used to provide input in

a test mode. It can be used when it is not feasible or desirable to connect to a database.

9.5.1.1.9 WeatherDataManager (Class)

This class is responsible for maintaining the current cache of weather station data, and

handling the processing involved when responding to request for data.

9.5.1.1.10 WeatherDataRequest (Class)

JAXB generated class (from the WeatherService.xsd) representing the request for weather

data. It contains optional parameter such as location to consider, radius from location and

lookback window.

CHART R7 Detailed Design 9-36 03/02/2011

9.5.1.1.11 WeatherDataRequestHandler (Class)

This class is the request handler that is responsible for handling Weather data requests. .

9.5.1.1.12 WeatherModule (Class)

This class is the pluggable web service module that provides Weather conditions lookup

functionality.

9.5.1.1.13 WeatherModuleDB (Class)

This class manages connections to the database where weather data is retrieved from

(currently the SCAN DB via the chart web db).

9.5.1.1.14 WeatherModuleProperties (Class)

This class extends the WebServiceModuleProperties and will provide all of the

configurable property values for the WeatherModule.

9.5.1.1.15 WeatherStationData (Class)

JAXB generated class (from the WeatherService.xsd) representing the data for a specific

WeatherStation.

9.5.1.1.16 WeatherStationWrapper (Class)

This class wraps a WeatherStationData object and provides accessor and convenience

methods used during weather request data processing.

9.5.1.1.17 WebServiceModule (Class)

This interface defines the methods that each module must implement in order to run within

the web service framework.

9.5.1.1.18 WebServiceModuleProperties (Class)

This abstract base class provides a base for WebServiceModule implementation classes to

extend in order to get access to their configuration properties.

CHART R7 Detailed Design 9-37 03/02/2011

9.5.2 Sequence Diagrams

9.5.2.1 WeatherModule:initialize (Sequence Diagram)

This diagram describes the initialization of the WeatherModule class in the

WeatherService. A module properties class is created followed by the creation of the

WeatherModuleDB class. Currently this provides access the SCAN Data via the

CHARTWeb DB. Next the WeatherDataManager is created and initialized. This class is

responsible for maintaining a cache of Weather data making it available at any time for

querying. Next the WeaterhDataReqeustHandler is created and registered with the

WebService framework to allow the web service URL to start responding to requests.

Creates the m_wsData
Hashtable and Timer used
to pul updates from the
database.

Creates and schedule the TimerTask used to
periodically update the data manager with
data pulled from the DB. Also, optionally
creates and schedules the TimerTask used to
populated data manager from a test file.

RequestManager

m_db:
WeatherModuleDB

WebService

WeatherModule

initialize(m_db)

svc:
WebService

m_weatherDataMgr:
WeatherDataManager

m_reqHdlr:
WeatherDatatRequestHandler

m_props:
WeatherModuleProperties

create("doGetWeatherData", m_reqHdlr)
reqBRI:

BasicRequestInfo

initialize(svc : WebService)

create()

registerRequestHandler(reqBRI)

getRequestManager()

create(service.getProps())

create(svc.getDBConnMgr())

create(this)

Figure 9-14. WeatherModule:initialize (Sequence Diagram)

CHART R7 Detailed Design 9-38 03/02/2011

9.5.2.2 DataRefreshTask:run (Sequence Diagram)

This diagram describes the DataRefreshTask.run() method (TimerTask) that will

periodically query the CHARTWeb DB for SCAN weather data. The retrieved data is then

passed to the WeatherDataManager.updateWeatherStationData() method to update its

cache. The optional TestFileUpdateTask TimerTask will do similar processing except it

will retrieve WeatherStationData periodically from an XML file in the file system.

Time

m_db:
WeatherModuleDB

wsData:
WeatherStationData[]

run()

create()

updateWeatherStationData wsData()

getWeatherStationData()

wsData

DataRefreshTask WeatherDataManager

TimeTask run() method used to update the WeatherDataManager with current
data from db. Optional TestFileUpdateTask (TimerTask) will call the
WeatherDataManager.updateWeatherStationData() method as well but will get an
array of WeatherStationData objects from a XML file from the file system. Module
properties specify intervals for both timer tasks.

Returns WeatherStationData[]
(JAXB) objects representing
current state of DB (SCAN).

Figure 9-15. DataRefreshTask:run (Sequence Diagram)

CHART R7 Detailed Design 9-39 03/02/2011

9.5.2.3 WeatherDataManager:updateWeatherStationData (Sequence Diagram)

This diagram describes the WeatherDataManager.updateWeatherStationData() method

which is responsible for keeping the cache of weather data up to date. The method is

passed an array of WeatherStationData objects. The method then loops thru the

WeatherStationData objects and updates the Hashtable of WeatherStationDatWrapper

objects by either updating an existing wrapper or creating a new one if needed. This

method is currently called by two TimerTasks. The DataRefreshTask, which pulls current

data from the SCAN DB, and the TestFileTask, which uses an externally supplied xml file

to update the WeatherDataManager. The later is meant to be used for testing purposes

when connecting to a db may not be desirable.

currWsData:
WeatherStationData

WeatherModule

updateWeatherStationData(
wsData : WeatherStationData[])

WeatherDataManager

put(newWrapper)

wrapper:
WeatherStationDataWrapper

wrapper : WeatherStationDataWrapper = get(extId)

[wrapper != NULL]

Loop thru all
WeatherStationData
objects.

m_wsTable:
Hashtable

extId : ExternalID =
getExtIdForWS(currWsData)

* wsData

Method is called
periodically by the
DataRefreshTask
TimerTask and also
by the optional
TestFileTask.

void

This mehtod will iterate thru wappers
and remove those objects that have not
been update in a configurable time period.
Ex. remove wrappers that have not been
updated in 24 hours.

c leanCache()

newWrapper:
WeatherStationDataWrapper

updateData (wsData)
m_data = wsData

m_lastUpdatetime = now

else

create(wsData)

Figure 9-16. WeatherDataManager:updateWeatherStationData (Sequence Diagram)

CHART R7 Detailed Design 9-40 03/02/2011

9.5.2.4 WeatherDataRequestHandler:handleWeatherDataRequest (Sequence Diagram)

This diagram describes the WeatherDataRequestHandler.handleWeatherDataRequest()

method which is call by the WeatherDataRequestHandler.processRequest() method when

the Webservice receives a request for weather data. The method retrieves a list of cloned

WeatherStationData from the WeatherDataManager. As the method loops thru the

WeatherStationData objects it will ignore objects based on location and look back if

specified in request. If route number and direction is specified in request, an attempt is

made to determine a surface conditions value for the WeatherStation. When all

WeatherStationData objects have been processed, XML is generated based on the

remaining WeatherStationData objects. The XML string is added to the Context passed in

and the path for the velocity template used to respond to the request is returned.

This method will sort responseData
in order of distance to Requested
Location (nearest first) if applicable.
Original request parameters are included
in the response.

conditions : RoadConditions =
calculateRoadConditions(

sensorData, rteNum, rteDir)

Loop thru
WeatherStationData[]

create<WeatherStationData>()
* wsData

responseData:
ArrayList

WeatherDataManager

Returns an array of WeatherStationData objects cloned from the
current cache. Note: distance and surfaceConditions members
are not populated in the returned object, they are set in this method.

wsData : WeatherStationData[] =
getWeatherStationData

distance : Integer =
calcDistanceBetween(

reqtLoc, wsLoc)

currWsData:
WeatherStationDatareqRadius : Integer = getRadius()

reqLookbackMins : Integer = getLookbackMins()

continue

rteNum : RouteNumber = getRouteNumber()

ctx:
Context

xml : String =
getWeatherDataXML(
responseData, req)

add(currWsData)

setRoadConditions(conditions)

setDistance(distance)

Continue with next
WeatherStation if
current WeatherStation is
outside requested radius or
 lookback window.

[distance > reqRadius]
continue

Private helper method that
calculates the distance in
tenths of miles between two
locations. Uses
 CHART2.Utility.GIS.
GeoLocation.distanceMiles()
method (great circle calculation).

Returns a JAXB
generated class.
Not IDL
PointLocationProfile.

reqLoc : PointLocationProfile = getLocation()

wsLoc : PointLocationProfile = getLocation()

[reqLookbackMins != NULL &&
current wsData Timestamp
older than lookback window]

req:
WeatherDataRequest

put("xmlResult", xml)

'weatherDataResponse.vm'

handleWeatherDataRequest(
req : WeatherDataRequest,

ctx : context)

Called from
ProcessRequest(). WeatherDataRequesthandler

sensorData : SensorData[] = getSensorData()

rteDir :SpecificRoadwayDirection = getRouteDir()

[reqLoc != NULL]

Figure 9-17. WeatherDataRequestHandler:handleWeatherDataRequest (Sequence

Diagram)

CHART R7 Detailed Design 9-41 03/02/2011

9.5.2.5 WeatherDataRequestHandler:calculateRoadSurfaceConditions (Sequence

Diagram)

This diagram describes the WeatherDataRequestHandler.calculateSurfaceConditions()

method which is used to determine a WeatherStation level Surface Conditions value based

on a set of SurfaceSensorData objects and optional route number and direction arguments

passed in. First preference is to select sensors that match route number and direction.

Second preference is to select sensors that match just route number. Third preference is to

select all sensors at the weather station. Returns the most adverse surface condition for all

selected surface sensors according to this list of increasing adversity: UNSPECIFIED,

DRY, WET, CHEMICALLY WET, ICE OR SNOW, Defaults to the UNSPECIFIED

surface condition.

Note: Ordinal values of the
RoadConditions Enum increase
for worse conditions:
UNSPECIFIED,
DRY,
WET,
CHEM_WET,
ICE_OR_SNOW.

[currConditions.ordinal() > routeAndDirConditions.ordinal()]

routeAndDirConditions = currConditions

[rteAndDirMatched]

returnConditions = routeAndDirConditions

else [rteMatched]

returnConditions = routeOnlyConditions

returnConditions = currConditions

[currConditions.ordinal() > routeOnlyConditions.ordinal()]

routeOnlyConditions = currConditions

WeatherDataRequestHandler

currSensor:
SurfaceSensorData

Note: Route # and Direction are optional
input parameters as well as
SurfaceSensorData members. When
comparing rteNum to currRteNum (and
rteDir to currRteDir), if either one OR BOTH
are NULL, consider this NOT A MATCH.
Left for implementation detail.

returnConditions : RoadConditions = RoadConditions.UNSPECIFIED

returnConditions

currRteNum : RouteNumber = getRouteNum()
currRteDir : SpecificRouteDirection = getRouteDir()

rteMatched = true

[rteDir matches currRteDir]

[rteNum matches currRteNum]

rteAndDirMatched = true

rteMatched : bool = false

rteAndDirMatched: bool = false

* sensorData

calculateRoadSurfacedConditions(
sensorData : SurfaceSensorData[],

rteNum : RouteNumber,
rteDir : SpecificRoadwayDirection)

routeOnlyConditions : RoadConditions = RoadConditions.UNSPECIFIED

routeAndDirConditions : RoadConditions = RoadConditions.UNSPECIFIED

[currConditions.ordinal() > returnConditions.ordinal()

currConditions : RoadConditions = getRoadConditions()

CHART R7 Detailed Design 9-42 03/02/2011

Figure 9-18. WeatherDataRequestHandler:calculateRoadSurfaceConditions (Sequence

Diagram)

CHART R7 Detailed Design 10-1 03/02/2011

10 Deprecated Functionalities

The following functions have been deprecated due to CHART R7 / Mapping R6 changes.

10.1 CHART Device Editor

10.1.1 View, Add, Update, Remove CHART Devices

In Release 7, the Integrated Map in the CHART application will start handling the mapping of

CHART Devices (DMS, HAR, SHAZAM, CAMERA, DETECTOR); Device viewing, adding,

updating, and removing will no longer be available in the Mapping CHART Device Editor.

CHART R7 Detailed Design 11-1 03/02/2011

11 Mapping To Requirements

The following table shows how the requirements in the CHART R7 Requirements document map to design elements contained in

this design.

Tag Requirement Feature Use Cases Other Design Elements

SR 1 ADMINISTER SYSTEMS AND

EQUIPMENT

 N/A N/A

SR1.4 MANAGE CHART CONTROL N/A N/A

SR1.4.2 PERFORM SHIFT HAND-OFF

(INCOMING) AND VIEW

OPERATIONS CENTER HOME

PAGE

 N/A N/A

SR1.4.2.2 The system shall allow a system

administrator to enter a message of the

day to be displayed within the shift

hand-off report.

Shift

Handoff

N/A N/A

SR1.4.3 MAINTAIN SHIFT HAND OFF

REPORT

 N/A N/A

SR1.4.3.1 The system shall allow the user to enter

notes and review other users' notes

related to shift or Center activities.

Shift

Handoff

N/A N/A

SR1.4.3.1.1 The system shall provide an online Shift

Hand Off Report supporting the

freeform entry of text.

Shift

Handoff

N/A N/A

SR1.4.3.1.2 A sufficiently privileged user shall be

able to enter information into the Shift

Hand Off Report.

Shift

Handoff

N/A N/A

CHART R7 Detailed Design 11-2 03/02/2011

Tag Requirement Feature Use Cases Other Design Elements

SR1.4.3.1.3 The Shift Hand Off Report shall be

viewable by any user.

Shift

Handoff

N/A N/A

SR1.4.3.2 The system shall automatically assign

and display the userid and

date/timestamp for each Shift Hand Off

Report entry.

Shift

Handoff

N/A N/A

SR1.4.3.3 The system shall allow the user to

format content for text appearance and

tables without having to enter HTML

commands.

Shift

Handoff

N/A N/A

SR1.4.3.5 The system shall automatically flag

and/or remove out-dated information.

Shift

Handoff

N/A N/A

SR1.4.3.7 The system shall allow the organization

of the data within the shift hand-off

report to be customized.

Shift

Handoff

N/A N/A

SR1.4.3.8 The system shall support a user

hierarchy to control the allowable

actions for each user.

Shift

Handoff

N/A N/A

SR1.4.3.8.1 A user level shall exist that allows users

to add, edit, and remove their own

entries, but not other user's entries.

Shift

Handoff

N/A N/A

SR1.4.3.8.2 A user level shall exist that allows users

to add, edit, and remove their own

entries and entries made by other users.

Shift

Handoff

N/A N/A

SR1.4.3.8.3 A user level shall exist that allows the

user to perform all features available in

the shift hand off report (administrator).

Shift

Handoff

N/A N/A

CHART R7 Detailed Design 11-3 03/02/2011

Tag Requirement Feature Use Cases Other Design Elements

SR1.4.3.9 The system shall include a calendar

within the shift hand off report.

Shift

Handoff

N/A N/A

SR1.4.3.9.1 The calendar in the shift hand off report

shall be capable of displaying events.

Shift

Handoff

N/A N/A

SR1.4.3.9.2 The calendar in the shift hand off report

shall allow suitably privileged users to

add, edit, and remove entries from the

calendar.

Shift

Handoff

N/A

SR1.4.3.9.3 The system shall allow any user to view

the calendar in the shift hand off report.

Shift

Handoff

N/A N/A

SR1.4.3.10 The system shall allow static reference

material to be included in the shift

handoff report.

Shift

Handoff

N/A N/A

SR1.5 INSTALL AND MAINTAIN

DEVICES

 N/A N/A

SR1.5.2 PUT EQUIPMENT/ DEVICES ON-

LINE

 N/A N/A

SR1.5.2.1 The system shall allow the user with

appropriate rights to select (or modify)

the equipment device parameters.

 N/A N/A

SR1.5.2.1.17 The system shall support configuration

parameters for TSS (Traffic Sensor

System) devices (detectors).

 N/A N/A

CHART R7 Detailed Design 11-4 03/02/2011

Tag Requirement Feature Use Cases Other Design Elements

SR1.5.2.1.17.13 Specify RTMS Configuration N/A N/A

SR1.5.2.1.17.13

.6

The system shall allow the user to

specify the grouping of the RTMS

detection zones into one or more logical

zone groups.

 N/A N/A

SR1.5.2.1.17.13

.15

The system shall allow a user with the

"configure TSS" functional right to edit

the map display properties for any

RTMS that has a defined location

(lat/lon).

Map R7HighLevel.Configure

TSS

ConfigureTSS.EditMap

DisplayOptions

chartlite.servlet.tss_classes CD

chartlite.servlet.tss:getEditTSSMapDisplayOptionsF

orm SD

chartlite.servlet.tss:processUpdateMapDisplayOptio

ns SD

SR1.5.2.1.17.13

.15.1

The system shall allow a user with the

configure TSS functional right to set the

map display options for the RTMS in

any mode (online, offline or

maintenance mode).

Map R7HighLevel.Configure

TSS

ConfigureTSS.EditMap

DisplayOptions

chartlite.servlet.tss:getEditTSSMapDisplayOptionsF

orm SD

chartlite.servlet.tss:processUpdateMapDisplayOptio

ns SD

SR1.5.2.1.17.13

.15.2

The system shall allow the user to

specify a primary display bearing for the

TSS as a value between 0 and 359

degrees, with a bearing of 0 degrees

indicating due east, with the bearing

growing counter-clockwise. (So a

bearing of 90 indicates due north, 180

indicates due west and 270 indicates due

south.)

Map R7HighLevel.Configure

TSS

ConfigureTSS.EditMap

DisplayOptions

ConfigureTSS.SetBeari

ng

TSSManagement CD GUITSSDataClasses CD

chartlite.servlet.tss:processUpdateZoneGroupDispla

yDirection SD Screenshot: HMI Figure 4-3

SR1.5.2.1.17.13

.15.2.1

When initially created a TSS will not

have a defined bearing.

Map R7HighLevel.Configure

TSS

ConfigureTSS.EditMap

DisplayOptions

ConfigureTSS.SetBeari

ng

TSSManagement CD GUITSSDataClasses CD

CHART R7 Detailed Design 11-5 03/02/2011

Tag Requirement Feature Use Cases Other Design Elements

SR1.5.2.1.17.13

.15.3

A zone group shall include a flag that

indicates how the zone group should be

displayed on maps.

Map R7HighLevel.Configure

TSS

ConfigureTSS.EditMap

DisplayOptions

ConfigureTSS.SetZone

GroupDisplayDirection

TSSManagement CD GUITSSDataClasses CD

Screenshot: HMI Figure 4-4

SR1.5.2.1.17.13

.15.3.1

The system shall allow a user to specify

that a zone group should be displayed on

maps using an arrow that points in the

direction of the TSS bearing.

Map R7HighLevel.Configure

TSS

ConfigureTSS.EditMap

DisplayOptions

ConfigureTSS.SetZone

GroupDisplayDirection

TSSManagement CD GUITSSDataClasses CD

Screenshot: HMI Figure 4-4

SR1.5.2.1.17.13

.15.3.2

The system shall allow a user to specify

that a zone group should be displayed on

maps using an arrow that points in the

direction opposite (180 degrees opposed)

to the TSS bearing.

Map R7HighLevel.Configure

TSS

ConfigureTSS.EditMap

DisplayOptions

ConfigureTSS.SetZone

GroupDisplayDirection

TSSManagement CD GUITSSDataClasses CD

Screenshot: HMI Figure 4-4

SR1.5.2.1.17.13

.15.3.3

The system shall allow the user to

indicate that the zone group should not

be displayed on maps.

Map R7HighLevel.Configure

TSS

ConfigureTSS.EditMap

DisplayOptions

ConfigureTSS.SetZone

GroupDisplayDirection

TSSManagement CD GUITSSDataClasses CD

Screenshot: HMI Figure 4-4

SR1.5.2.1.17.13

.15.3.4

The system shall warn a user who is

changing a zone group from not

displayable on maps to displayable on

maps that the zone group name may be

displayed on the Internet map. This

warning shall include the currently

configured name of the zone group.

Map R7HighLevel.Configure

TSS

ConfigureTSS.EditMap

DisplayOptions

ConfigureTSS.SetZone

GroupDisplayDirection

Screenshot: HMI Figure 4-5

SR1.5.2.1.17.13

.15.4

The system shall allow a user with the

configure TSS functional right to set the

display order for each zone group

relative to other zone groups of the TSS

with the same display bearing.

Map R7HighLevel.Configure

TSS

ConfigureTSS.EditMap

DisplayOptions

ConfigureTSS.SetZone

GroupDisplayOrder

TSSManagement CD GUITSSDataClasses CD

Screenshot: HMI Figure 4-6

CHART R7 Detailed Design 11-6 03/02/2011

Tag Requirement Feature Use Cases Other Design Elements

SR1.5.2.1.17.13

.16

The system shall allow an administrator

to configure the number of pixels offset

that should be used for displaying TSS

arrows at each map zoom scale.

Map R7HighLevel.Configure

TSS

ConfigureTSS.SetOffse

t

SR1.5.2.1.18 The system shall support setting

configuration parameters for Cameras.

 N/A N/A

SR1.5.2.1.18.7 Edit Camera Configuration R7CameraUses.ucd

SR1.5.2.1.18.7.

4

The system shall allow a suitably

privileged user to edit the settings for an

existing NTCIP camera, as listed in the

Specify Video Source Attributes,

Specify Basic Camera Attributes, and

Specify Controllable Camera Attributes

requirements, except for the No Video

Available flag.

NTCIP

Camera

R7CameraUses.ucd CameraControlModule:SetCameraConfiguration.etd

SR1.5.2.1.18.12 Add / Copy NTCIP Camera NTCIP

Camera

R7CameraUses.ucd CameraControlModule:AddCamera.etd

SR1.5.2.1.18.12

.1

The system shall allow a suitably

privileged user to add an NTCIP camera

to the system.

NTCIP

Camera

R7CameraUses.ucd CameraControlModule:AddCamera.etd

SR1.5.2.1.18.12

.2

The system shall allow the user to

specify the attributes listed under the

Edit NTCIP Camera Configuration

requirements when adding an NTCIP

camera.

NTCIP

Camera

R7CameraUses.ucd CameraControlModule:AddCamera.etd

SR1.5.2.1.18.12

.3

The system shall require the user to

choose a factory site when adding an

NTCIP camera.

NTCIP

Camera

R7CameraUses.ucd CameraControlModule:AddCamera.etd

SR1.5.2.1.18.12

.4

The system shall allow the user to pre-

populate the configuration settings for

creating a new NTCIP camera using the

settings of an existing NTCIP camera.

NTCIP

Camera

R7CameraUses.ucd CameraControlModule:AddCamera.etd

CHART R7 Detailed Design 11-7 03/02/2011

Tag Requirement Feature Use Cases Other Design Elements

SR1.5.2.10 The system shall allow the user with

appropriate rights to put equipment on-

line in CHART.

 N/A N/A

SR1.5.2.10.12 The system shall allow a suitably

privileged user to put a camera online.

 N/A N/A

SR1.5.2.10.12.2 The system shall allow a suitably

privileged user to put a COHU camera

online.

NTCIP

Camera

(Existing COHU rqmt

included for reference)

SR1.5.2.10.12.3 The system shall allow a suitably

privileged user to put an NTCIP camera

online.

NTCIP

Camera

ManageCamera.ucd

SR1.5.2.12 The system shall allow the suitably

privileged to take a device offline

 N/A N/A

SR1.5.2.12.7 The system shall allow a suitably

privileged user to take a camera offline.

 N/A N/A

SR1.5.2.12.7.2 The system shall allow a suitably

privileged user to take a COHU camera

offline.

NTCIP

Camera

(Existing COHU rqmt

included for reference)

SR1.5.2.12.7.3 The system shall allow a suitably

privileged user to take an NTCIP camera

offline.

NTCIP

Camera

ManageCamera.ucd CameraControlModule:TakeCameraOffline.etd

SR1.5.3 PERFORM ROUTINE

MAINTENANCE. The system shall

allow the user with appropriate rights to

view the device status, and know why

it's not on-line (including the key trouble

ticket information) and know the

problem is being addressed. The system

shall also allow the user to take the

device offline of maintenance or other

adjustments including resetting the

controller. Suggestion/example to be

validated: e.g., integrate device

 N/A N/A

CHART R7 Detailed Design 11-8 03/02/2011

Tag Requirement Feature Use Cases Other Design Elements

maintenance web pages with CHART.

SR1.5.3.11 The system shall allow a suitably

privileged user to poll a camera for its

current status if it is not offline.

 N/A N/A

SR1.5.3.11.2 The system shall allow a suitably

privileged user to poll a COHU camera

for its current status.

NTCIP

Camera

(Existing COHU rqmt

included for reference)

SR1.5.3.11.3 The system shall allow a suitably

privileged user to poll an NTCIP camera

for its current status.

NTCIP

Camera

ManageCamera.ucd

ManageCameraControl.

ucd

CameraControlModule.cad

NTCIPCameraProtocolHdlr:poll.etd

SR1.5.4 RESPOND TO EQUIPMENT/ DEVICE

OUTAGE.The system shall allow the

user with appropriate rights to notify

maintenance personnel of an equipment

outage that they have detected (or has

been brought to their attention).

 N/A N/A

SR1.5.4.7 The system shall generate a Device

Failure Alert for all DMSs and TSSs

capable of reporting that they are

experiencing a hardware failure

NTCIP

Camera

(Not a new

requirement, just

reworded. Used to say

"all devices" which was

not and is not accurate.)

SR1.5.9 View Devices On Map N/A N/A

SR1.5.9.5 The system shall allow a suitably

privileged user to view TSSs on the map.

Map R7HighLevel.ViewTSS

OnMap

MapAndGISUses.View

DevicesOnMap

MapClasses CD

MapReqHdlr:getHomePageMapDataJSON SD

Screenshot: HMI Figure 4-9 Screenshot: HMI Figure

4-10

SR1.5.9.5.1 The system shall display TSS devices on

a set of map layers that contain only

TSSs.

Map R7HighLevel.ViewTSS

OnMap

MapAndGISUses.View

DevicesOnMap

MapReqHdlr:getHomePageMapDataJSON SD

MapReqHdlr:addJSONFeaturesForTSSLayers SD

Screenshot: HMI Figure 4-8

CHART R7 Detailed Design 11-9 03/02/2011

Tag Requirement Feature Use Cases Other Design Elements

SR1.5.9.5.1.1 The TSS map layer shall have a child

layer that shows only CHART system

TSSs.

Map R7HighLevel.ViewTSS

OnMap

MapReqHdlr:getHomePageMapDataJSON SD

MapReqHdlr:addJSONFeaturesForTSSLayers SD

Screenshot: HMI Figure 4-8

SR1.5.9.5.1.2 The TSS map layer shall have a child

layer for each CHART organization that

owns at least one external TSS

Map R7HighLevel.ViewTSS

OnMap

MapReqHdlr:getHomePageMapDataJSON SD

MapReqHdlr:addJSONFeaturesForTSSLayers SD

Screenshot: HMI Figure 4-8

SR1.5.9.5.2 The system shall allow the user to click

on a TSS in the map to display a subset

of the available information for the TSS.

Map MapDeviceAndTraffic

EventUses.UseTSSFro

mMap

Screenshot: HMI Figure 4-10

MapReqHdlr:addJSONFeaturesForTSSLayers SD

SR1.5.9.5.2.4 The map callout shall include

configuration information and current

traffic parameters for each zone group.

Map MapDeviceAndTraffic

EventUses.UseTSSFro

mMap

Screenshot: HMI Figure 4-10

MapReqHdlr:addJSONFeaturesForTSSLayers SD

SR1.5.9.5.2.4.1 The map callout shall include the name

of each configured zone group.

Map MapDeviceAndTraffic

EventUses.UseTSSFro

mMap

Screenshot: HMI Figure 4-10

SR1.5.9.5.2.4.2 The map callout shall include the current

zone group volume, speed and

occupancy if the currently logged in user

has the view detailed VSO functional

right.

Map MapDeviceAndTraffic

EventUses.UseTSSFro

mMap

Screenshot: HMI Figure 4-10

MapReqHdlr:addJSONFeaturesForTSSLayers SD

SR1.5.9.5.2.4.3 The map callout shall include the current

zone group speed summary if the

currently logged in user has the view

summary VSO functional right and does

not have the view detailed VSO

functional right.

Map MapDeviceAndTraffic

EventUses.UseTSSFro

mMap

MapReqHdlr:addJSONFeaturesForTSSLayers SD

CHART R7 Detailed Design 11-10 03/02/2011

Tag Requirement Feature Use Cases Other Design Elements

SR1.5.9.5.4 The system shall use a graphic to

indicate the current status of a TSS on

the map provided that the TSS has a

defined lat/lon location.

 MapDeviceAndTraffic

EventUses.UseTSSFro

mMap

Screenshot: HMI Figure 4-9

SR1.5.9.5.4.1 If a the user has rights to see at least

summary VSO data for the TSS and the

TSS has a defined location (lat/lon), a

defined bearing, at least one defined

zone group that is displayable on maps,

and is online (and not comm. failed,

comm. marginal, or hardware failed) the

system will show a graphic that uses the

bearing and a colored arrow per zone

group to depict current speed

information for the TSS.

Map MapDeviceAndTraffic

EventUses.UseTSSFro

mMap

Screenshot: HMI Figure 4-9

SR1.5.9.5.4.1.1 The arrow for each zone group shall be

colored to indicate the current speed

range for that zone group.

Map MapDeviceAndTraffic

EventUses.UseTSSFro

mMap

Screenshot: HMI Figure 4-9

SR1.5.9.5.4.1.2 The system shall position the zone group

arrows based on the configured zone

group display order per direction, with

lower numbers closer to center. (Starting

at the location of the TSS, zone groups

with a lower display order will appear

first and zone groups with higher display

orders will appear further away from the

TSS lat/lon position.)

Map MapDeviceAndTraffic

EventUses.UseTSSFro

mMap

Screenshot: HMI Figure 4-7

SR1.5.9.5.4.2 If a TSS does not have a defined

bearing, has no defined zone groups that

are displayable on maps, is not online, or

is online and comm. failed, comm.

marginal, or hardware failed, the system

will show a graphic on the map that

matches the graphic in the device list for

that particular TSS.

Map MapDeviceAndTraffic

EventUses.UseTSSFro

mMap

Screenshot: HMI Figure 4-9

CHART R7 Detailed Design 11-11 03/02/2011

Tag Requirement Feature Use Cases Other Design Elements

SR1.5.10 Verify Device Compatibility N/A

SR1.5.10.2 The system shall provide a stand alone

tool to allow Camera suppliers to test if

an NTCIP Camera is compatible with

the CHART system.

NTCIP

Camera

R7VerifyNTCIPCamer

aCompatibility.ucd

SR1.5.10.2.1 The NTCIP Camera Compatibility

Tester shall allow the user to test if the

CHART Camera Pan feature operates

properly on an NTCIP Camera.

NTCIP

Camera

R7VerifyNTCIPCamer

aCompatibility.ucd

SR1.5.10.2.1.1 The NTCIP Camera Compatibility

Tester shall allow the user to test that the

CHART Camera Pan feature can pan the

camera at a specific user-configured

speed.

NTCIP

Camera

R7VerifyNTCIPCamer

aCompatibility.ucd

SR1.5.10.2.1.2 The NTCIP Camera Compatibility

Tester shall allow the user to test the

ability for CHART to query zoom level

and use it to automatically set pan speed

on an NTCIP Camera to a reasonable

value. ("Reasonable" means not

intolerably slow nor uncontrollably fast.)

NTCIP

Camera

R7VerifyNTCIPCamer

aCompatibility.ucd

SR1.5.10.2.1.2.

1

The computed NTCIP Camera pan speed

value shall be interpolated along a linear

scale within user-configured minimum

and maximum pan speeds, as discussed

in SR3.6.1.4.3.6.1.1.

NTCIP

Camera

R7VerifyNTCIPCamer

aCompatibility.ucd

SR1.5.10.2.2 The NTCIP Camera Compatibility

Tester shall allow the user to test if the

CHART Camera Tilt feature operates

properly on an NTCIP Camera.

NTCIP

Camera

R7VerifyNTCIPCamer

aCompatibility.ucd

CHART R7 Detailed Design 11-12 03/02/2011

Tag Requirement Feature Use Cases Other Design Elements

SR1.5.10.2.2.1 The NTCIP Camera Compatibility

Tester shall allow the user to test that the

CHART Camera Tilt feature can tilt the

camera at a specific user-configured

speed.

NTCIP

Camera

R7VerifyNTCIPCamer

aCompatibility.ucd

SR1.5.10.2.2.2 The NTCIP Camera Compatibility

Tester shall allow the user to test the

ability for CHART to query zoom level

and use it to automatically set tilt speed

on an NTCIP Camera to a reasonable

value. ("Reasonable" means not

intolerably slow nor uncontrollably fast.)

NTCIP

Camera

R7VerifyNTCIPCamer

aCompatibility.ucd

SR1.5.10.2.2.2.

1

The computed NTCIP Camera tilt speed

value shall be interpolated along a linear

scale within user-configured minimum

and maximum tilt speeds, as discussed in

SR3.6.1.4.3.6.1.2.

NTCIP

Camera

R7VerifyNTCIPCamer

aCompatibility.ucd

SR1.5.10.2.3 The NTCIP Camera Compatibility

Tester shall allow the user to test if the

CHART Camera Zoom feature operates

properly on an NTCIP Camera.

NTCIP

Camera

R7VerifyNTCIPCamer

aCompatibility.ucd

SR1.5.10.2.4 The NTCIP Camera Compatibility

Tester shall allow the user to test if the

CHART Camera Auto Focus feature

operates properly on an NTCIP Camera.

NTCIP

Camera

R7VerifyNTCIPCamer

aCompatibility.ucd

SR1.5.10.2.5 The NTCIP Camera Compatibility

Tester shall allow the user to test if the

CHART Camera Adjust Focus feature

operates properly on an NTCIP Camera.

NTCIP

Camera

R7VerifyNTCIPCamer

aCompatibility.ucd

SR1.5.10.2.6 The NTCIP Camera Compatibility

Tester shall allow the user to test if the

CHART Camera Auto Iris feature

operates properly on an NTCIP Camera.

NTCIP

Camera

R7VerifyNTCIPCamer

aCompatibility.ucd

CHART R7 Detailed Design 11-13 03/02/2011

Tag Requirement Feature Use Cases Other Design Elements

SR1.5.10.2.7 The NTCIP Camera Compatibility

Tester shall allow the user to test if the

CHART Camera Adjust Iris feature

operates properly on an NTCIP Camera.

NTCIP

Camera

R7VerifyNTCIPCamer

aCompatibility.ucd

SR1.5.10.2.8 The NTCIP Camera Compatibility

Tester shall allow the user to test if the

CHART Camera Set Preset feature

operates properly on a NTCIP Camera.

NTCIP

Camera

R7VerifyNTCIPCamer

aCompatibility.ucd

SR1.5.10.2.9 The NTCIP Camera Compatibility

Tester shall allow the user to test if the

CHART Camera Go to Preset feature

operates properly on an NTCIP Camera.

NTCIP

Camera

R7VerifyNTCIPCamer

aCompatibility.ucd

SR1.5.10.2.10 The NTCIP Camera Compatibility

Tester shall allow the user to test if the

CHART Camera Set Default Title Line

one feature operates properly on an

NTCIP Camera.

NTCIP

Camera

R7VerifyNTCIPCamer

aCompatibility.ucd

SR1.5.10.2.11 The NTCIP Camera Compatibility

Tester shall allow the user to test if the

CHART Camera Default Title line two

operates properly on an NTCIP Camera.

NTCIP

Camera

R7VerifyNTCIPCamer

aCompatibility.ucd

SR1.5.10.2.12 The NTCIP Camera Compatibility

Tester shall allow the user to test if the

CHART Camera Set Power On/Off

feature operates properly on an NTCIP

Camera.

NTCIP

Camera

R7VerifyNTCIPCamer

aCompatibility.ucd

SR1.5.10.2.13 The NTCIP Camera Compatibility

Tester shall provide output that shows

the user the results of the tests that are

run.

NTCIP

Camera

R7VerifyNTCIPCamer

aCompatibility.ucd

SR1.5.10.2.13.1 The NTCIP Camera Compatibility

Tester shall allow the user to save the

test results to a file.

NTCIP

Camera

R7VerifyNTCIPCamer

aCompatibility.ucd

CHART R7 Detailed Design 11-14 03/02/2011

Tag Requirement Feature Use Cases Other Design Elements

SR1.5.10.2.14 The NTCIP Camera Compatibility

Tester shall support connecting to the

camera being tested via a direct RS232

connection.

NTCIP

Camera

R7VerifyNTCIPCamer

aCompatibility.ucd

SR1.5.10.2.15 The NTCIP Camera Compatibility

Tester shall support connecting to the

camera being tested via a TCP/IP

(network) connection.

NTCIP

Camera

R7VerifyNTCIPCamer

aCompatibility.ucd

SR1.5.10.2.16 The NTCIP Camera Compatibility

Tester shall allow the user to configure

the communication settings used by the

tester.

NTCIP

Camera

R7VerifyNTCIPCamer

aCompatibility.ucd

SR1.5.10.2.16.1 The NTCIP Camera Compatibility

Tester shall allow configuration of the

following RS232 communication

settings: Comm Port Name, Baud Rate,

Data Bits, Parity, Stop Bits, and Flow

Control.

NTCIP

Camera

R7VerifyNTCIPCamer

aCompatibility.ucd

SR1.5.10.2.16.2 The NTCIP Camera Compatibility

Tester shall allow configuration of the

following TCP/IP communication

settings: IP Address and Port.

NTCIP

Camera

R7VerifyNTCIPCamer

aCompatibility.ucd

SR1.5.10.2.16.3 The NTCIP Camera Compatibility

Tester shall allow configuration of the

following general communication

settings: Drop Address (Camera

Number), SNMP Community String,

HDLC Framing Required Flag, Initial

Receive Timeout, Inter-character

Receive Timeout, Total Receive

Duration.

NTCIP

Camera

R7VerifyNTCIPCamer

aCompatibility.ucd

SR1.5.10.2.17 The NTCIP Camera Compatibility

Tester shall allow the user to configure

the camera settings used by the tester.

NTCIP

Camera

R7VerifyNTCIPCamer

aCompatibility.ucd

CHART R7 Detailed Design 11-15 03/02/2011

Tag Requirement Feature Use Cases Other Design Elements

SR1.5.10.2.17.1 The NTCIP Camera Compatibility

Tester shall allow configuration of the

following camera settings: Minimum

Pan Speed, Maximum Pan Speed,

Minimum Tilt Speed, Maximum Tilt

Speed, Zoom Speed, Focus Speed.

NTCIP

Camera

R7VerifyNTCIPCamer

aCompatibility.ucd

SR1.5.10.2.18 The NTCIP Camera Compatibility

Tester shall allow the user to test if the

CHART Poll Camera command operates

properly

NTCIP

Camera

R7VerifyNTCIPCamer

aCompatibility.ucd

SR3 MONITOR TRAFFIC AND

ROADWAYS

 N/A N/A

SR3.6 UTILIZE VIDEO N/A N/A

SR3.6.1 The system shall allow a suitably

privileged user to control cameras.

 N/A N/A

CHART R7 Detailed Design 11-16 03/02/2011

Tag Requirement Feature Use Cases Other Design Elements

SR3.6.1.3 CHART II shall establish and maintain

communication with the camera for the

duration of the control session.

NTCIP

Camera

SendCameraCommands

.ucd

ManageCameraControl.

ucd

NTCIPCameraProtocolHdlr:connect.etd

SR3.6.1.3.1 An operator shall be notified if

communications with the camera is lost

during a camera control.

NTCIP

Camera

SendCameraCommands

.ucd

ManageCameraControl.

ucd

SR3.6.1.3.2 The camera control session shall have a

configurable maximum no activity

duration, after which the control session

shall be dropped.

NTCIP

Camera

SendCameraCommands

.ucd

ManageCameraControl.

ucd

SR3.6.1.3.2.1 The controlling operator shall be

informed if the control session has been

dropped

NTCIP

Camera

SendCameraCommands

.ucd

ManageCameraControl.

ucd

SR3.6.1.4 A suitably privileged CHART II

operator shall have the capability to

initiate camera control.

 N/A N/A

SR3.6.1.4.3 A suitably privileged operator shall be

able to pan or tilt a camera for which a

control session is open.

 N/A N/A

SR3.6.1.4.3.5 The system shall allow a suitably

privileged user to pan or tilt a COHU

camera for which a control session is

open.

NTCIP

Camera

(Existing COHU rqmt

included for reference)

SR3.6.1.4.3.6 The system shall allow a suitably

privileged user to pan or tilt an NTCIP

camera for which a control session is

open.

NTCIP

Camera

ManageCamera.ucd

SendCameraCommands

.ucd

CameraControlModule.cad

NTCIPCameraProtocolHdlr:adjpan.etd

CHART R7 Detailed Design 11-17 03/02/2011

Tag Requirement Feature Use Cases Other Design Elements

SR3.6.1.4.3.6.1 The system shall automatically adjust

the pan/tilt speed of an NTCIP camera

based on zoom level.

NTCIP

Camera

ManageCamera.ucd CameraControlModule.cad

NTCIPCameraProtocolHdlr:calculatecontorlSpeeds.

etd NTCIPCameraProtocolHdlr:adjZoom.etd

NTCIPCameraProtocolHdlr:getZoomPosition.etd

SR3.6.1.4.3.6.1.

1

For NTCIP cameras, the system shall

automatically adjust pan speed, on a

linear scale, between a configurable

minimum pan speed (configurable per

camera) when the camera is fully

zoomed in and a configurable maximum

pan speed (configurable per camera)

when the camera is fully zoomed out

NTCIP

Camera

ManageCamera.ucd CameraControlModule.cad

NTCIPCameraProtocolHdlr:calculatecontorlSpeeds.

etd NTCIPCameraProtocolHdlr:adjZoom.etd

NTCIPCameraProtocolHdlr:getZoomPosition.etd

SR3.6.1.4.3.6.1.

2

For NTCIP cameras, the system shall

automatically adjust tilt speed, on a

linear scale, between a configurable

minimum tilt speed (configurable per

camera) when the camera is fully

zoomed in and a configurable maximum

tilt speed (configurable per camera)

when the camera is fully zoomed out

NTCIP

Camera

ManageCamera.ucd CameraControlModule.cad

NTCIPCameraProtocolHdlr:calculatecontorlSpeeds.

etd NTCIPCameraProtocolHdlr:adjZoom.etd

NTCIPCameraProtocolHdlr:getZoomPosition.etd

SR3.6.1.4.4 A suitably privileged operator shall be

able to zoom a camera for which a

control session is open.

 N/A N/A

SR3.6.1.4.4.2 The system shall allow a suitably

privileged user to zoom a COHU camera

for which a control session is open.

NTCIP

Camera

(Existing COHU rqmt

included for reference)

SR3.6.1.4.4.3 The system shall allow a suitably

privileged user to zoom an NTCIP

camera for which a control session is

open.

NTCIP

Camera

ManageCamera.ucd

SendCameraCommands

.ucd

CameraControlModule.cad

NTCIPCameraProtocolHdlr:adjZoom.etd

SR3.6.1.4.5 A suitably privileged operator shall be

able to focus a camera for which a

control session is open.

 N/A N/A

CHART R7 Detailed Design 11-18 03/02/2011

Tag Requirement Feature Use Cases Other Design Elements

SR3.6.1.4.5.5 The system shall allow a suitably

privileged user to adjust the focus of a

COHU camera for which a control

session is open.

NTCIP

Camera

(Existing COHU rqmt

included for reference)

SR3.6.1.4.5.6 The system shall allow a suitably

privileged user to adjust the focus of an

NTCIP camera for which a control

session is open.

NTCIP

Camera

ManageCamera.ucd

SendCameraCommands

.ucd

CameraControlModule.cad

SR3.6.1.4.6 A suitably privileged operator shall be

able to adjust iris control of a camera for

which a control session is open.

 N/A N/A

SR3.6.1.4.6.5 The system shall allow a suitably

privileged user to toggle the auto iris

mode of a COHU camera for which a

control session is open.

NTCIP

Camera

(Existing COHU rqmt

included for reference)

SR3.6.1.4.6.6 The system shall allow a suitably

privileged user to adjust the iris of a

COHU camera for which a control

session is open.

NTCIP

Camera

(Existing COHU rqmt

included for reference)

SR3.6.1.4.6.7 The system shall allow a suitably

privileged user to toggle the auto iris

mode of an NTCIP camera for which a

control session is open.

NTCIP

Camera

ManageCamera.ucd

SendCameraCommands

.ucd

CameraControlModule.cad

SR3.6.1.4.6.8 The system shall allow a suitably

privileged user to adjust the iris of an

NTCIP camera for which a control

session is open.

NTCIP

Camera

ManageCamera.ucd

SendCameraCommands

.ucd

CameraControlModule.cad

CHART R7 Detailed Design 11-19 03/02/2011

Tag Requirement Feature Use Cases Other Design Elements

SR3.6.1.4.8 A suitably privileged operator shall be

able to move a camera to a predefined

preset position for which a control

session is open

NTCIP

Camera

DisplayCamera.ucd

ManageCamera.ucd

CameraControlModule.cad

NTCIPCameraProtocolHdlr:moveToPreset.etd

NTCIPCameraProtocolHdlr:setPresetTitle.etd

NTCIPCameraProtocolHdlr:setLabelText.etd

SR3.6.1.4.8.1 The system shall indicate the current

preset number and description, if the

camera is currently at a preset.

NTCIP

Camera

ManageCamera.ucd NTCIPCameraProtocolHdlr:moveToPreset.etd

NTCIPCameraProtocolHdlr:setPresetTitle.etd

NTCIPCameraProtocolHdlr:setLabelText.etd

SR3.6.1.4.9 The system shall allow a suitably

privileged operator to maintain CCTV

(camera) presets.

NTCIP

Camera

ManageCamera.ucd NTCIPCameraProtocolHdlr:storePreset.etd

NTCIPCameraProtocolHdlr:setPresetTitle.etd

NTCIPCameraProtocolHdlr:setLabelText.etd

SR3.6.1.4.9.4 A stored preset shall include an operator-

specified title to appear on the camera

image display for those camera types

which support that functionality.

NTCIP

Camera

ManageCamera.ucd NTCIPCameraProtocolHdlr:storePreset.etd

NTCIPCameraProtocolHdlr:setPresetTitle.etd

NTCIPCameraProtocolHdlr:setLabelText.etd

SR3.6.1.4.9.4.3 Preset titles and positions shall be stored

on the camera, for those COHU cameras

that support such an option.

NTCIP

Camera

(Existing COHU rqmt

included for reference)

SR3.6.1.4.9.4.4 Preset titles and positions shall be stored

on the camera, for those NTCIP cameras

that support such an option.

NTCIP

Camera

ManageCamera.ucd

SendCameraCommands

.ucd

NTCIPCameraProtocolHdlr:storePreset.etd

NTCIPCameraProtocolHdlr:setPresetTitle.etd

NTCIPCameraProtocolHdlr:setLabelText.etd

SR3.6.1.4.9.5 Camera preset positions and titles shall

be stored in the CHART II database.

 CameraControlModule:SavePreset.etd

SR3.6.1.4.9.5.3 The number of presets that may be

stored for a camera shall not exceed 10.

NTCIP

Camera

ManageCamera.ucd CameraControlModule:SavePreset.etd

SR3.6.1.4.10 A suitably privileged operator shall be

able to reset a camera for which a

control session is open.

 N/A N/A

CHART R7 Detailed Design 11-20 03/02/2011

Tag Requirement Feature Use Cases Other Design Elements

SR3.6.1.4.10.2 The system shall allow a suitably

privileged user to reset a COHU camera

for which a control session is open.

NTCIP

Camera

(Existing COHU rqmt

included for reference)

SR3.6.1.4.13 A suitably privileged operator shall be

able to directly control the titles which

appear on the camera image, for cameras

which support direct setting of line 1 and

2 of the camera titles, provided a control

session is open for that camera.

 N/A N/A

SR3.6.1.4.13.3 The system shall allow a suitably

privileged user to directly control the

line one title line that appears on the

COHU camera image, provided that a

control session is open for the camera.

NTCIP

Camera

(Existing COHU rqmt

included for reference)

SR3.6.1.4.13.4 The system shall allow a suitably

privileged user to directly control the

line two title line that appears on the

COHU camera image, provided that a

control session is open for the camera.

NTCIP

Camera

(Existing COHU rqmt

included for reference)

SR3.6.1.4.13.5 The system shall allow a suitably

privileged user to directly control the

line one title line that appears on the

NTCIP camera image, provided that a

control session is open for the camera.

NTCIP

Camera

ManageCamera.ucd

SendCameraCommands

.ucd

NTCIPCameraProtocolHdlr:setLabelText.etd

SR3.6.1.4.13.6 The system shall allow a suitably

privileged user to directly control the

line two title line that appears on the

NTCIP camera image, provided that a

control session is open for the camera.

NTCIP

Camera

ManageCamera.ucd

SendCameraCommands

.ucd

NTCIPCameraProtocolHdlr:setLabelText.etd

SR3.6.1.4.17 The system shall allow a suitably

privileged user to override control of a

camera that is under the control of

another user.

 N/A N/A

SR3.6.1.4.17.5 The system shall allow a suitably

privileged user to override control of a

COHU camera that is under the control

of another user.

NTCIP

Camera

(Existing COHU rqmt

included for reference)

CHART R7 Detailed Design 11-21 03/02/2011

Tag Requirement Feature Use Cases Other Design Elements

SR3.6.1.4.17.6 The system shall allow a suitably

privileged user to override control of an

NTCIP camera that is under the control

of another user.

NTCIP

Camera

ManageCamera.ucd

ManageCameraControl.

ucd

SR3.6.1.5 Cameras shall be polled at a

configurable interval to verify control

status.

NTCIP

Camera

ManageCameraControl.

ucd

SR3.6.1.5.1 Cameras that do not respond shall be

identified as having communications

problems.

NTCIP

Camera

ManageCameraControl.

ucd

SR3.6.1.10 The system will support control of

COHU MPC cameras, COHU 3955

cameras, NTCIP compatible cameras,

and Surveyor VFT cameras.

NTCIP

Camera

ManageCamera.ucd

ManageCameraControl.

ucd

RequestCameraControl.etd

SR3.6.1.11 The system shall support standards

based protocols for communicating with

camera control sending devices

wherever possible, except when

proprietary protocols are the only option

for communicating with vendor devices.

NTCIP

Camera

SendCameraCommands

.ucd

SR3.6.1.11.1 The system shall support camera control

over an IP network.

NTCIP

Camera

SR3.6.1.11.2 The system shall support direct camera

control over a COM port.

 N/A N/A

SR3.6.1.11.2.4 The system shall support direct camera

control of a single NTCIP camera on a

COM port.

NTCIP

Camera

SendCameraCommands

.ucd

PortLocatorClasses.cad DataPortUtility:receive.etd

DataPortUtility:receiveFromDirectPort.etd

DataPortUtility:send.etd

SR3.6.1.12 The system shall allow a user with

control of a camera to release control of

the camera.

 N/A N/A

SR3.6.1.12.3 The system shall allow a user with

control of a COHU camera to release

control of the camera.

NTCIP

Camera

(Existing COHU rqmt

included for reference)

SR3.6.1.12.4 The system shall allow a user with

control of an NTCIP camera to release

control of the camera.

NTCIP

Camera

ManageCamera.ucd

ManageCameraControl.

ucd

CHART R7 Detailed Design 11-22 03/02/2011

Tag Requirement Feature Use Cases Other Design Elements

SR3.6.1.13 The system shall automatically release

control of a camera when the user closes

the camera’s control window.

 N/A N/A

SR3.6.1.13.2 The system shall automatically release

control of a COHU camera when the

user closes the camera’s control window.

NTCIP

Camera

(Existing COHU rqmt

included for reference)

SR3.6.1.13.3 The system shall automatically release

control of an NTCIP camera when the

user closes the camera’s control window.

NTCIP

Camera

ManageCamera.ucd

ManageCameraControl.

ucd

SR4 MANAGE EVENTS N/A N/A

SR4.2 OPEN EVENT N/A N/A

SR4.2.2 RECORD EVENT DETAILS N/A N/A

SR4.2.2.4 CAPTURE WEATHER AND

ROADWAY CONDITIONS. The

system shall capture the environmental

and roadway conditions for an event.

Weather

Integrati

on

Preselect Road Surface

Condition, Log Weather

Station Data, Display

Weather Station

Conditions

N/A (general requirement - see sub reqs)

SR4.2.2.4.1 The system shall capture roadway

information for an event, if available.

Weather

Integrati

on

Preselect Road Surface

Condition, Log Weather

Station Data, Display

Weather Station

Conditions

N/A (general requirement - see sub reqs)

SR4.2.2.4.1.1 The system shall automatically select the

road surface condition indicated by a

nearby weather station for an event when

the event is opened, if the event has

known coordinates, and if weather data

is available at the time of the opening of

the event.

Weather

Integrati

on

Preselect Road Surface

Condition

TrafficEventModuleClassesR7 CD, UtilityClasses3

CD, TrafficEventFactoryImpl :

createTrafficEventHelper SD,

TrafficEventFactoryImpl :

queryRoadSurfaceConditionWeatherInfoIfApplicabl

e SD, TrafficEventGroup :

queryRoadSurfaceConditionWeatherInfo SD,

TrafficEventGroup :

handleRoadSurfaceConditionWeatherInfo SD,

SynchAsynchQueryUtil : executeTimeLimitedQuery

SD

CHART R7 Detailed Design 11-23 03/02/2011

Tag Requirement Feature Use Cases Other Design Elements

SR4.2.2.4.1.1.1 The system shall use the nearest weather

station configured with roadway sensors,

with recent data, within a configurable

radius from the event to select the road

surface condition.

Weather

Integrati

on

Query Nearby Weather

Station Data

TrafficEventGroup :

queryRoadSurfaceConditionWeatherInfo SD,

WeatherDataRequestHandler :

handleWeatherDataRequest SD

SR4.2.2.4.1.1.1.

1

The system shall allow the administrator

to configure the radius for including a

weather stations' data in an event.

Weather

Integrati

on

Configure Weather

Settings

SystemProfileReqHdlr : getWeatherSettingsForm

SD, SystemProfileReqHdlr : setWeatherSettings SD,

chartlite.data.MiscDataClasses CD

SR4.2.2.4.1.1.1.

2

The system shall allow the administrator

to configure the maximum age for

including a weather station's data in an

event.

Weather

Integrati

on

Configure Weather

Settings

SystemProfileReqHdlr : getWeatherSettingsForm

SD, SystemProfileReqHdlr : setWeatherSettings SD,

chartlite.data.MiscDataClasses CD

SR4.2.2.4.1.1.2 The system shall select the worst road

surface condition from a subset of the

roadway sensors reporting to the

selected weather station.

Weather

Integrati

on

Query Nearby Weather

Station Data

WeatherDataRequestHandler :

calculateRoadSurfaceConditions SD

SR4.2.2.4.1.1.2.

1

The system shall select the worst road

surface condition from among the

station's roadway sensors located on the

event's primary route and direction, if

any.

Weather

Integrati

on

Query Nearby Weather

Station Data

WeatherDataRequestHandler :

calculateRoadSurfaceConditions SD

SR4.2.2.4.1.1.2.

2

The system shall select the worst road

surface condition from among the

station's roadway sensors located on the

event's primary route if any, if no

roadway sensors are found matching the

event's primary route and direction.

Weather

Integrati

on

Query Nearby Weather

Station Data

WeatherDataRequestHandler :

calculateRoadSurfaceConditions SD

SR4.2.2.4.1.1.2.

4

The system shall select the worst road

surface condition from among all of the

weather station's roadway sensors if no

roadway sensors are found matching the

event's primary route.

Weather

Integrati

on

Query Nearby Weather

Station Data

WeatherDataRequestHandler :

calculateRoadSurfaceConditions SD

SR4.2.2.4.1.1.3 DISPLAY WEATHER STATION

CONDITIONS The system shall display

weather station information to the user

captured at the time the system selected

the road surface condition but only if the

system selected a road surface condition.

Weather

Integrati

on

Display Weather

Station Conditions

TrafficEventGroup :

handleRoadSurfaceConditionWeatherInfo; Prototype

CHART R7 Detailed Design 11-24 03/02/2011

Tag Requirement Feature Use Cases Other Design Elements

SR4.2.2.4.1.1.3.

1

The system shall display the name of the

weather system from which the data was

obtained.

Weather

Integrati

on

Display Weather

Station Conditions

Prototype / JAD only

SR4.2.2.4.1.1.3.

2

The system shall display a description of

the location of the weather station.

Weather

Integrati

on

Display Weather

Station Conditions

Prototype / JAD only

SR4.2.2.4.1.1.3.

3

The system shall display the distance

from the traffic event to the weather

station.

Weather

Integrati

on

Display Weather

Station Conditions

Prototype / JAD only

SR4.2.2.4.1.1.3.

4

The system shall display the road surface

condition reported by the weather

station.

Weather

Integrati

on

Display Weather

Station Conditions

Prototype / JAD only

SR4.2.2.4.1.1.3.

5

The system shall display the wind speed

reported by the weather station, if

available.

Weather

Integrati

on

Display Weather

Station Conditions

Prototype / JAD only

SR4.2.2.4.1.1.3.

6

The system shall display the wind

direction reported by the weather station,

if available.

Weather

Integrati

on

Display Weather

Station Conditions

Prototype / JAD only

SR4.2.2.4.1.1.3.

7

The system shall display the visibility

reported by the weather station, if

available.

Weather

Integrati

on

Display Weather

Station Conditions

Prototype / JAD only

SR4.2.2.4.1.1.3.

8

The system shall display the air

temperature reported by the weather

station, if available.

Weather

Integrati

on

Display Weather

Station Conditions

Prototype / JAD only

SR4.2.2.4.1.1.3.

9

The system shall display the

precipitation type reported by the

weather station, if available.

Weather

Integrati

on

Display Weather

Station Conditions

Prototype / JAD only

SR4.2.2.4.1.1.3.

10

The system shall display the

precipitation intensity reported by the

weather station, if available.

Weather

Integrati

on

Display Weather

Station Conditions

Prototype / JAD only

SR4.2.2.4.1.1.3.

11

The system shall display the time that

the weather data was collected from the

sensors.

Weather

Integrati

on

Display Weather

Station Conditions

Prototype / JAD only

SR4.2.2.4.1.1.3.

12

The system shall display data for each

roadway sensor managed by the weather

station.

Weather

Integrati

on

Display Weather

Station Conditions

Prototype / JAD only

SR4.2.2.4.1.1.3.

12.1

The system shall display a description of

the location of the roadway sensor.

Weather

Integrati

Display Weather

Station Conditions

Prototype / JAD only

CHART R7 Detailed Design 11-25 03/02/2011

Tag Requirement Feature Use Cases Other Design Elements

on

SR4.2.2.4.1.1.3.

12.2

The system shall display the road surface

temperature reported by the roadway

sensor, if available.

Weather

Integrati

on

Display Weather

Station Conditions

Prototype / JAD only

SR4.2.2.4.1.1.3.

12.3

The system shall display the road surface

condition reported by the roadway

sensor, if available.

Weather

Integrati

on

Display Weather

Station Conditions

Prototype / JAD only

SR4.2.2.4.1.2 The system shall allow the user to

invoke the Intranet Map page to view

nearby weather stations, if the Intranet

Map is accessible from the user's

browser.

Weather

Integrati

on

View Traffic Events Prototype / JAD, ServletBaseClasses CD

SR4.2.2.4.1.3 The system shall add entries to the

traffic event history log summarizing the

system-selected weather station and

roadway sensor information.

Weather

Integrati

on

Log Weather Station

Data

TrafficEventGroup :

handleRoadSurfaceConditionWeatherInfo SD

SR4.2.2.4.1.3.1 The system shall log the same weather

data fields displayed to the user, as

defined in the Display Weather Station

Conditions requirements

(SR.4.2.2.4.1.1.3 and its

subrequirements).

Weather

Integrati

on

Log Weather Station

Data

N/A (Use Case Only)

SR4.2.2.4.1.3.2 The system shall add an entry to the

traffic event log whenever the road

surface condition is selected by the

system.

Weather

Integrati

on

Preselect Road Surface

Condition, Log Weather

Station Data

TrafficEventGroup :

handleRoadSurfaceConditionWeatherInfo SD

SR4.2.2.4.1.3.3 The system shall add a weather entry to

the traffic event log when the event is

closed, if weather information is

available.

Weather

Integrati

on

Close Event, Log

Weather Station Data

TrafficEventGroup : close SD, TrafficEventGroup :

handleRoadSurfaceCondition SD

SR4.2.2.4.1.4 The system shall allow the user to

invoke the details page for the selected

weather station within the SCAN Web

user interface, if the SCAN Web user

interface is accessible from the user's

browser.

Weather

Integrati

on

Display Weather

Station Conditions

Prototype / JAD, ServletBaseClasses CD

CHART R7 Detailed Design 11-26 03/02/2011

Tag Requirement Feature Use Cases Other Design Elements

SR10 SYSTEM INTEGRATION N/A N/A

SR10.10 The system shall integrate TSS data

from external systems together with

internally created CHART TSS data.

 N/A N/A

SR10.10.2 The system shall allow a suitably

privileged user to manage the importing

of a TSS from an external system into

the CHART system.

 N/A N/A

SR10.10.2.3 The system shall allow a suitably

privileged user to delete an external TSS

from the CHART system. (Note: This

does not prevent its use as candidate

external TSS.)

 N/A N/A

SR10.10.2.3.2 The external TSS candidates list shall

include a notice that setting any TSS

from "included" state to a state other

than "included" will result in that

external TSS being deleted from the

system along with any location or

bearing attributes it may have been

given.

Map

The following table shows how the requirements in the Mapping R6 Requirements document map to design elements contained in

this design.

Tag Text Feature Use Cases Other Design Elements

SR6 Detailed Map Layer Requirements N/A N/A

SR6.4 Traffic Speed Sensor (TSS/RTMS) N/A N/A

SR6.4.3

Detector arrow shall be rotated
according to the bearing generated
by the CHART system. Map

View TSSs on
Intranet &
Internet map DataSynchronization: HumanMachine

CHART R7 Detailed Design 11-27 03/02/2011

Tag Text Feature Use Cases Other Design Elements

SR6.4.6

When user hovers over the detector
icon, tool tip shall display following
information: Detector location, Last
data report date and time, Zone
Group direction(s), Indication of
Speed and Owning organization. ExternalTSS

View TSSs on
Intranet &
Internet map Configuration - Intranet Map (Class Diagram)

SR6.4.6.1

The system shall display the average
speed value for each displayable
detector zone group if the current
user has CHART's
ViewVSODetailedData right for the
detector's owning organization.

ExternalTSS,
Map

View TSSs on
Intranet &
Internet map Configuration - Intranet Map (Class Diagram)

SR6.4.9 Zone Group Display DataSync

SR6.4.9.1

The system shall display the zone
group name as specified by the
CHART system. DataSync

View Zone Group
Display on TSS

CHART Data Exporter :
CHARTMap.Handlers.TssInventoryHandler :
CD

SR6.4.9.2

The system shall display a detector
zone group only if the 'Display On
Maps' indicator from the CHART
system indicates to do so. DataSync

View Zone Group
Display on TSS

CHART Data Exporter :
CHARTMap.Handlers.TssInventoryHandler :
CD

SR6.4.9.2.1

If a TSS is changed to have no
displayable zone groups (in CHART),
it will not be displayed on the map. Map

View Zone Group
Display on TSS

CHART Data Exporter :
CHARTMap.Handlers.TssInventoryHandler :
CD

SR6.4.9.2.2

If a TSS has one or more displayable
zone groups marked as map
displayable (in CHART) the TSS will
be displayed on the map. Map

View Zone Group
Display on TSS

CHART Data Exporter :
CHARTMap.Handlers.TssInventoryHandler :
CD

SR11
Data Exporter Synchronization
Requirements DataSync N/A N/A

CHART R7 Detailed Design 11-28 03/02/2011

Tag Text Feature Use Cases Other Design Elements

SR11.1 General DataSync N/A N/A

SR11.1.7

The system shall maintain latitude
and longitude information for
SHAZAM, DMS, TSS, HAR, CAMERA,
DETECTOR and Traffic Events. DataSync

CHART Data Exporter Synchronization SD
DataSynchronization: HumanMachine

SR11.2 Synchronize Add Event DataSync
Synchronize Add
Events CHART Data Exporter Synchronization SD

SR11.2.2

The synchronization application
shall add an entry to the spatial
table if a new CHART Device (DMS,
HAR, SHAZAM, CAMERA, DETECTOR)
is found.

DataSync,
DataSyncCam
era

Synchronize Add
Events CHART Data Exporter Synchronization SD

SR11.3 Synchronize Update Event DataSync
Synchronize
Update Events

CHART Data Exporter
Synchronization:UpdateInventory() SD

SR11.3.2

The synchronization application
shall update an entry based on the
unique ID in the relevant spatial
table if a CHART Device (DMS, HAR,
SHAZAM, CAMERA, DETECTOR)
changes location.

DataSync,
DataSyncCam
era

Synchronize
Update Events

CHART Data Exporter
Synchronization:UpdateInventory() SD

CHART R7 Detailed Design 11-29 03/02/2011

Tag Text Feature Use Cases Other Design Elements

SR11.5
Functionalities retired from Device
Editor DataSync

Synchronize Add
Events ,
Synchronize
Update Events ,
Synchronize
Remove Events N/A

SR11.5.1

The Device Editor shall prohibit the
display of CHART Devices (DMS,
HAR, SHAZAM, CAMERA and
DETECTOR).

DataSync,
DataSyncCam
era

Synchronize Add
Events ,
Synchronize
Update Events ,
Synchronize
Remove Events DataSynchronization: HumanMachine

SR11.5.2

The Device Editor shall not allow
users to add CHART Devices (DMS,
HAR, SHAZAM, CAMERA and
DETECTOR) to the map. (This will be
done via CHART only.)

DataSync,
DataSyncCam
era

Synchronize Add
Events ,
Synchronize
Update Events ,
Synchronize
Remove Events DataSynchronization: HumanMachine

SR11.5.3

The Device Editor shall not allow
users to update CHART Devices
(DMS, HAR, SHAZAM, CAMERA and
DETECTOR). (This will be done via
CHART only.)

DataSync,
DataSyncCam
era

Synchronize Add
Events ,
Synchronize
Update Events ,
Synchronize
Remove Events DataSynchronization: HumanMachine

SR11.5.4

The Device Editor shall not allow
users to remove CHART Devices
(DMS, HAR, SHAZAM, CAMERA, and
DETECTOR) from the map. (This will
be done via CHART only.)

DataSync,
DataSyncCam
era

Synchronize Add
Events ,
Synchronize
Update Events ,
Synchronize
Remove Events DataSynchronization: HumanMachine

CHART R7 Detailed Design 11-30 03/02/2011

Tag Text Feature Use Cases Other Design Elements

SR11.2 Synchronize Add Event DataSync
Synchronize Add
Events CHART Data Exporter Synchronization SD

SR11.2.2

The synchronization application
shall add an entry to the spatial
table if a new CHART Device (DMS,
HAR, SHAZAM, CAMERA, DETECTOR)
is found.

DataSync,
DataSyncCam
era

Synchronize Add
Events CHART Data Exporter Synchronization SD

SR11.3 Synchronize Update Event DataSync
Synchronize
Update Events

CHART Data Exporter
Synchronization:UpdateInventory() SD

SR11.3.2

The synchronization application
shall update an entry based on the
unique ID in the relevant spatial
table if a CHART Device (DMS, HAR,
SHAZAM, CAMERA, DETECTOR)
changes location.

DataSync,
DataSyncCam
era

Synchronize
Update Events

CHART Data Exporter
Synchronization:UpdateInventory() SD

SR11.5
Functionalities retired from Device
Editor DataSync

Synchronize Add
Events ,
Synchronize
Update Events ,
Synchronize
Remove Events N/A

SR11.5.1

The Device Editor shall prohibit the
display of CHART Devices (DMS,
HAR, SHAZAM, CAMERA and
DETECTOR).

DataSync,
DataSyncCam
era

Synchronize Add
Events ,
Synchronize
Update Events ,
Synchronize
Remove Events DataSynchronization: HumanMachine

SR11.5.2
The Device Editor shall not allow
users to add CHART Devices (DMS,

DataSync,
DataSyncCam

Synchronize Add
Events , DataSynchronization: HumanMachine

CHART R7 Detailed Design 11-31 03/02/2011

Tag Text Feature Use Cases Other Design Elements

HAR, SHAZAM, CAMERA and
DETECTOR) to the map. (This will be
done via CHART only.)

era Synchronize
Update Events ,
Synchronize
Remove Events

SR11.5.3

The Device Editor shall not allow
users to update CHART Devices
(DMS, HAR, SHAZAM, CAMERA and
DETECTOR). (This will be done via
CHART only.)

DataSync,
DataSyncCam
era

Synchronize Add
Events ,
Synchronize
Update Events ,
Synchronize
Remove Events DataSynchronization: HumanMachine

SR11.5.4

The Device Editor shall not allow
users to remove CHART Devices
(DMS, HAR, SHAZAM, CAMERA, and
DETECTOR) from the map. (This will
be done via CHART only.)

DataSync,
DataSyncCam
era

Synchronize Add
Events ,
Synchronize
Update Events ,
Synchronize
Remove Events DataSynchronization: HumanMachine

SR6 Detailed Map Layer Requirements N/A N/A

SR6.4 Traffic Speed Sensor (TSS/RTMS)

CHART R7 Detailed Design 11-32 03/02/2011

Tag Text Feature Use Cases Other Design Elements

SR6.4.3

Detector arrow shall be rotated
according to the bearing generated
by the CHART system. Map

View TSSs on
Intranet &
Internet map DataSynchronization: HumanMachine

SR6.4.6

When user hovers over the detector
icon, tool tip shall display following
information: Detector location, Last
data report date and time, Zone
Group direction(s), Indication of
Speed and Owning organization. ExternalTSS

View TSSs on
Intranet &
Internet map Configuration - Intranet Map (Class Diagram)

SR6.4.6.1

The system shall display the average
speed value for each displayable
detector zone group if the current
user has CHART's
ViewVSODetailedData right for the
detector's owning organization.

ExternalTSS,
Map

View TSSs on
Intranet &
Internet map Configuration - Intranet Map (Class Diagram)

SR6.4.9 Zone Group Display DataSync

SR6.4.9.1

The system shall display the zone
group name as specified by the
CHART system. DataSync

View Zone Group
Display on TSS

CHART Data Exporter :
CHARTMap.Handlers.TssInventoryHandler :
CD

SR6.4.9.2

The system shall display a detector
zone group only if the 'Display On
Maps' indicator from the CHART
system indicates to do so. DataSync

View Zone Group
Display on TSS

CHART Data Exporter :
CHARTMap.Handlers.TssInventoryHandler :
CD

SR6.4.9.2.1

If a TSS is changed to have no
displayable zone groups (in CHART),
it will not be displayed on the map. Map

View Zone Group
Display on TSS

CHART Data Exporter :
CHARTMap.Handlers.TssInventoryHandler :
CD

CHART R7 Detailed Design 11-33 03/02/2011

Tag Text Feature Use Cases Other Design Elements

SR6.4.9.2.2

If a TSS has one or more displayable
zone groups marked as map
displayable (in CHART) the TSS will
be displayed on the map. Map

View Zone Group
Display on TSS

CHART Data Exporter :
CHARTMap.Handlers.TssInventoryHandler :
CD

SR11
Data Exporter Synchronization
Requirements DataSync N/A N/A

SR11.1 General DataSync N/A N/A

SR11.1.7

The system shall maintain latitude
and longitude information for
SHAZAM, DMS, TSS, HAR, CAMERA,
DETECTOR and Traffic Events. DataSync

CHART Data Exporter Synchronization SD
DataSynchronization: HumanMachine

SR11.2 Synchronize Add Event DataSync
Synchronize Add
Events CHART Data Exporter Synchronization SD

SR11.2.2

The synchronization application
shall add an entry to the spatial
table if a new CHART Device (DMS,
HAR, SHAZAM, CAMERA, DETECTOR)
is found.

DataSync,
DataSyncCam
era

Synchronize Add
Events CHART Data Exporter Synchronization SD

SR11.3 Synchronize Update Event DataSync
Synchronize
Update Events

CHART Data Exporter
Synchronization:UpdateInventory() SD

CHART R6 Detailed Design 12-1 09/21/2010

12Acronyms/Glossary

GIS Geographic Information System (GIS) is any system that captures, stores,

analyzes, manages, and presents data that are linked to location

Home Page Map The map component shown on the home page of the CHART user interface.

Integrated Map The mapping components that are being built into the CHART user interface

as part of Release 6 of the CHART application.

Intranet Map The CHART Mapping application that is not integrated into the CHART

user interface.

Location Alias A pre-defined location (lat/lon) that has been stored with some name

attributes to allow operators to utilize the location repeatedly.

Maintenance Portal A customized version of the CHART GUI tailored to device maintenance

personnel.

Nearby Devices Map Map shown on the details page for a traffic event that shows only the target

traffic event and the devices that are near it.

NTCIP National Transportation Communications for ITS Protocol. A family of

standards designed to achieve interoperability and interchangeability

between computers and electronic traffic control equipment from different

manufacturers.

Object Location Map Map component that is used in conjunction with the object location form

when setting the location of a traffic event or device.

Open Layers Open source JavaScript mapping API utilized by the integrated map

components in the CHART GUI.

REST Representational State Transfer - a web services architecture style used in

CHART that leverages web technologies such as http and XML

RWIS Roadway Weather Information System

Standard GUI The CHART GUI when not accessed via the maintenance portal.

TSS Transportation Sensor System

WMS A Web Map Service (WMS) is a standard protocol for serving georeferenced

map images over the Internet that are generated by a map server using data

from a GIS database.

Wx Weather Station

